
Resource Usage on Evolving Software

(Durchgängige Berücksichtigung des Ressourcenverbrauchs durch

automatische statische Analyse)

Jörg Herter

AbsInt GmbH

2016

Software Quality

 Embedded control systems must satisfy high quality objectives.

 Software failures can

 in general: cause high costs, e.g. due to recall campaigns

 in safety-critical systems: endanger human beings

 In highly safety-critical systems software test and validation
responsible for significant part of development costs (≥ 50%).

 Challenge: ensure system safety at reasonable costs.

 The cost of a software defect is related to the time it is discovered:
the later a bug is found, the higher the costs to fix it.

 Verification activities should be performed continuously during the
development process to detect critical errors and prevent
late-stage integration problems.

2

Functional Safety

 Demonstration of functional correctness

 Well-defined criteria

 Automated and/or model-based testing

 Formal techniques: model checking, theorem proving

 Satisfaction of non-functional requirements

 No crashes due to runtime errors (Division by zero,
invalid pointer accesses, overflow and rounding errors)

 Resource usage:

 Timing requirements (e.g. WCET, WCRT)

 Memory requirements (e.g. no stack overflow)

 Insufficient: Tests & Measurements

 Test end criteria unclear

 No full coverage possible

 "Testing, in general, cannot show the absence of errors." [DO-178B]

 Formal technique: abstract interpretation finds the worst case and
can provide guarantees.

3

Required by

DO-178B / DO-178C /

ISO-26262, EN-50128,

IEC-61508

Required by

DO-178B / DO-178C /

ISO-26262, EN-50128,

IEC-61508

Non-Functional Software Failures

 Time drift in Patriot missles in 1991

 Floating-point rounding error

 Crash of railway switch controller 1995 in Hamburg-Altona

 Stack overflow

 Explosion of Ariane rocket 1996

 Arithmetic overflow

 USS Yorktown cruiser propulsion system failure 1997

 Divide by zero

 Toyota Camry 2004 Unintended Acceleration

 Stack overflow, memory corruption

4

Automotive: ISO-26262

5

Criticality levels:

A(lowest)

to

D (highest)

Excerpt from:

ISO 26262-6 Road vehicles - Functional safety –

Part 6: Product development: Software Level, 2011.

SW Unit Design & Implementation

6

Excerpt from:

Final Draft ISO 26262-6 Road vehicles - Functional safety –

Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.

Static Program Analysis

 General Definition: results are only computed from the
program structure, without executing the program under
analysis.

 Analysis scope

 Binary code: worst-case execution time, worst-case stack usage

 Source code: violations of coding rules, runtime errors

 General advantage:

 No need to perform time-consuming measurements on physical
hardware

 Well-suited for continuous verification

7

Static Program Analysis

 Analysis depth:

 Syntax-based: Style checkers (e.g. MISRA-C)

 Unsound semantics-based: Bug-finders / bug-hunters.

 Can find some bugs, but cannot guarantee that all bugs are found.

 E.g. Coverity CMC, Klocwork K7, CodeSonar, Polyspace Bug Finder,
…

 Sound semantics-based / Abstract Interpretation-based

 Can guarantee that all bugs (from the class under analysis) are
found.

 Results valid for every possible program execution with any
possible input scenario.

 Examples: aiT WCET Analyzer, StackAnalyzer,
Polyspace Code Prover, Astrée.

8

Model-based Software Development

 Application graphically specified
by data flow diagrams and/or
finite state machines

 Model is software specification
and has executable semantics

 Automated & integrated
development tools:

 automatic target code generation (typically C code)

 automatic simulation / model-based testing

 formal verification at model level

 Examples: Esterel SCADE, Matlab/Simulink + dSPACE TargetLink

 BUT: Higher level of abstraction than with programming in C.

 What about timing, memory consumption,
runtime errors, integration issues?

9

Mastering Resource Usage
in Evolving Software

10

Real-Time Systems

 Controllers in planes, cars, plants, … are expected to finish
their tasks within reliable time bounds.

 Hence, it is essential that an upper bound on the execution
times of all runnables/tasks is known.

 Commonly called the Worst-Case Execution Time (WCET).

 Schedulability analysis must be performed.

Worst-Case Response Time (WCRT)

 Hard real-time systems: deadline violations
can have catastrophic consequences.

11

12

LOAD r2, _a

LOAD r1, _b

ADD r3,r2,r1

0

10

20

30

0 Wait

Cycles

1 Wait

Cycle

External

(6,1,1,1,...)

Execution Time depending on Flash Memory

(Clock Cycles)

Clock Cycles

0

50

100

150

200

250

300

350

Best Case Worst Case

Execution Time (Clock Cycles)

Clock Cycles

MPC 5xx (2000) PPC 755 (2001)

x = a + b;

0

50

100

150

200

250

300

350

Best Case Worst Case

Execution Time (Clock Cycles)

Clock Cycles

68000 (1990)

The Timing Problem

The Timing Problem

13

 Execution time

Exact worst-case

execution time

Safe upper bound

for worst-case

execution time (aiT)

Unsafe

execution time

measurements

Probability

WCET Estimates

(TimingProfiler)

 Global static program analysis by Abstract Interpretation (sound):
microarchitecture analysis (caches, pipelines, …) + value analysis

 Integer linear programming for path analysis

 Safe and precise bounds on the worst-case execution time (WCET)

14

 aiT WCET Analyzer

Entry Point

clock 10200 kHz ;

loop "_codebook" + 1 loop exactly 16 end;

recursion "_fac" max 6;

snippet "printf" is not analyzed and takes max 333 cycles;

flow "U_MOD" + 0xAC bytes / "U_MOD" + 0xC4 bytes is max 4;

area from 0x20 to 0x497 is readonly;

Specifications (*.ais) Worst Case Execution Time
+ Visualization, Documentation

void Task (void) {

 variable++;

 function();

 next++:

 if (next)

 do this;

 terminate()

}

Application Code

Executable
(*.elf /*.out)

Compiler
Linker

From aiT to TimingProfiler

 aiT is designed to give timing guarantees

 High precision

 In-depth modelling of microprocessor architecture

 Extensively validated

 Requires exact microcontroller variant and detailed configuration to
be known

 In early design stages

 Precise microcontroller variant & configuration may not be fixed yet

 Estimations of the WCET are sufficient

 Timing information must be available with low computing effort

 User interaction must be minimal

 Solution: TimingProfiler

15

TimingProfiler Characteristics

 Based on a representative core implementing the target
instruction set

 No in-depth modelling of each specific core + peripherals

 Defaults for hardware configuration provided

 No user specification needed

 Can be adapted by users, if desired

 Defaults for software characteristics provided

 Default loop and recursion bounds are provided if exact bound not
known

 Can be refined by users, if desired

 Computation time and memory requirements minimized

 Pipelines analysis follows local worst-case

 Much faster than safe analysis, but typically close to safe
result

16

 Global static program analysis:
microarchitecture analysis (caches, pipelines, …) + value analysis

 Integer linear programming for path analysis

 Estimates on the worst-case execution time (WCET)

17

 TimingProfiler Workflow

Entry Point

clock 10200 kHz ;

loop "_codebook" + 1 loop exactly 16 end;

recursion "_fac" max 6;

snippet "printf" is not analyzed and takes max 333 cycles;

flow "U_MOD" + 0xAC bytes / "U_MOD" + 0xC4 bytes is max 4;

area from 0x20 to 0x497 is readonly;

Specifications (*.ais) Worst Case Execution Time Estimate
+ Visualization, Documentation

void Task (void) {

 variable++;

 function();

 next++:

 if (next)

 do this;

 terminate()

}

Application Code

Executable
(*.elf /*.out)

Compiler
Linker

Result Exploration

 Visualization of call and control flow graph with timing
information for critical path, functions, basic blocks.

 Table overview of direct vs. cumulative execution time for
each function: context-insensitive and context-sensitive

 What is maximal contribution of function in all potential execution
contexts?

 What is contribution of function when called from A vs. called from B?

 Executable browser: information about variables (names,
types, address, size), sections (code/data, access rights,
allocated/relocated, ...)

 Variable usage statistics based on counting memory accesses
on WCET path

 Memory map explorer: size and contents of memory areas

18

Integration in the Development Process

 Batch mode execution enables TimingProfiler to be used in
continuous integration environments

 fully automatic tool execution

 continuous profiling of timing behavior per night/build/commit/...

 Result and configuration files available in open XML formats

 TimingProfiler can be complemented by StackAnalyzer in the
same GUI (a³), enabling continuous timing and stack analysis.

 Tool coupling to SymTA/S enables seamless system-level
timing analysis from instruction level to interECU end-to-end
times.

 Tool coupling to dSPACE TargetLink enables continuous timing
monitoring during model-based development.

19

The a³ Jenkins Plug-In

 Provides automatic integration of TimingProfiler in the
Continuous Verification Framework Jenkins

 One-click installation

 Easy to configure

 Fully integrated

 Features:

 Configure an analyzer run as a Jenkins build step.

 Automatically mark build step as erroneous depending on analysis
results and pedantic levels.

 Generate analysis reports directly in your Jenkins workspace.

 Access analysis results via the Jenkins web interface.

20

TimingProfiler Benefits

 Provides continuous feedback about timing behavior during
development

 Enables significant reduction of effort compared to trace
and measurement-based timing testing

 Available even at stages where application is not mature
enough for timing measurements

 Intuitive graphical exploration of execution time
distribution, time-critical paths, and variable usage

 Can be seamlessly integrated in development process and
continuous verification frameworks

 Enables time-conscious software development

 Avoids late-stage integration problems

21

Worst-Case Stack Usage Analysis

22

The Stack Usage Analysis Problem

 In embedded systems the required stack space has to be reserved for

each task at configuration time => maximal stack usage has to be

statically known.

 Underestimating the maximal stack usage can cause stack overflows.

Stack overflows are severe errors:

 they can cause wrong reactions and program crashes,

 they are hard to recognize,

 they are hard to reproduce and fix.

 Overestimating the maximal stack usage means wasting resources

(storage space, energy consumption, weight, money).

 Testing is error-prone and expensive

 Typical stack usage of a task can be very different from maximum stack usage.

 Dynamic testing (e.g. stack pollution checks) typically cannot guarantee that the

worst case stack usage has been observed.

23

Computing the Worst-Case Stack Height

 StackAnalyzer computes safe upper bounds of the stack
usage of the tasks in a program for all inputs

 Static program analysis based on Abstract Interpretation

24

Entry Point

recursion "_fac" max 6;

instruction "_main" + 1 computed calls

"_fooA","_fooB","_fooC";

routine "_fib" incarnates max 5;

Specifications (*.ais) Worst Case Stack Usage

+ Visualization, Documentation void Task (void) {

 variable++;

 function();

 next++:

 if (next)

 do this;

 terminate()

}

Application Code

Executable
(*.elf /*.out)

Compiler
Linker

StackAnalyzer

Demonstrating the
Absence of Runtime Errors

in Evolving Software

25

The Astrée Analyzer

 Sound static Analyzer based on Abstract Interpretation designed to

prove the absence of runtime errors and data races in C programs

(C99 standard)

 If Astrée does not report any alarm (potential runtime error / data

race) this is a formal proof that there are no such errors in the code.

 Reference customer: Airbus flight control software (DO-178B level A).

No false alarm on >755.000 LOC, analysis time 6h.

 Automatic tool qualification according to ISO-26262, DO-178B/DO-

178C, IEC-61508, IEC-60880, etc. by Qualification Support Kits (QSK)

and Qualification Software Life Cycle Data reports (QLSCD).

 Support for model-based code generation; tool couplings to dSPACE

TargetLink, model link to MATLAB/ SIMULINK available.

 Open formats, full continuous verification support.

26

The Astrée Rulechecker

 Check for compliance with coding rules
 Support for MISRA C:2004, MISRA C:2012, CERT, CWE, and ISO/IEC

17961:2013

 Determine code metrics
and checks for
threshold violations
 Includes common

HIS metrics with compliant
default thresholds.

 E.g.: comment density,
cyclomatic complexity, …

 Extensible architecture
 Configurable rules

 User-defined sets of coding rules
can be added (engineering service by AbsInt).

27

The Astrée Analyzer

 Sound static analysis based on
abstract interpretation to prove
absence of runtime errors.

 Astrée detects all runtime errors
with few false alarms:
 Array index out of bounds

 Int/float division by 0

 Invalid pointer dereferences

 Arithmetic overflows and wrap-arounds

 Floating point overflows and invalid operations (Inf and NaN)

 Uninitialized variables

 Data races, inconsistent locking

 + Floating-point rounding errors taken into account

 + User-defined assertions, unreachable code,
 non-terminating loops

28

The Astrée Jenkins Plug-In

 Provides automatic integration of Astrée in the Continuous
Verification Framework Jenkins

 One-click installation

 Easy to configure

 Fully integrated

 Features:

 Configure an analyzer run as a Jenkins build step.

 Launch Astrée analysis as newly created analysis revision.

 Automatically mark build step as erroneous depending on the
categories and statuses of findings.

 Generate analysis reports directly in your Jenkins workspace.

 Access analysis results via the Jenkins web interface.

29

30

Excerpt from:

Final Draft ISO 26262-6 Road vehicles - Functional safety –

Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.

Development Process

TimingProfiler

aiT WCET Analyzer Astrée

StackAnalyzer

Conclusions

 Static analysis is ideally suited for continuous verification
activities throughout the software development stage

 TimingProfiler provides continuous feedback about the
timing behavior without accessing physical hardware and
without need to stimulate, test and measure

 Enables time-conscious software development

 Avoids late-stage integration problems

 StackAnalyzer provides continuous feedback about the
stack consumption without accessing physical hardware
and without need to stimulate, test and measure

 Enables time-conscious software development

 Avoids late-stage integration problems

Conclusions continued

 Astrée provides a history-aware analysis concept which
records the evolution of the analyzer configuration and
links it to the software evolution

 Easily determine differences between analysis revisions

 Easily adapt analyzer configuration to new source code versions

 Analysis results on previous software versions
easily reproducible

33

email: info@absint.com

http://www.absint.com

