hualitg

Clean Unit Tests

Johannes Hochrainer

Senior Consultant & Trainer
johannes.hochrainer@software-quality-lab.com

© Software Quality Lab www.software-quality-lab.com

Q.

\am uality Clean Unit Tests

nnovation Meets Quality

What does “clean” mean?

© Software Quality Lab www.software-quality-lab.com

q Clean Unit Tests

N uality Requirements

Innovation Meets Quality

Functional
suitability As a product owner | want that all requirements are

tested so that the customer gets what he wants.
Performance
efficiency

Compatibility

As a test manager | want that unit tests
are derived systematically from
requirements so that nobody doubts the
quality of the tests.

Usability
ISO 25010
Portability

Maintainability
As a developer | want to have a
trustworthy feedback after a

Security
change so that | can work faster.

Reliability

© Software Quality Lab www.software-quality-lab.com

Q.

hualitg

Innovation Meets Quality

Functional
suitability

Performance
efficiency

Compatibility

Usability
ISO 25010
Portability

Maintainability

Security

Reliability

Clean Unit Tests
Requirements

As a freshman | want to read unit tests
in order to learn the software.

As a developer | want to understand the
unit tests of my colleagues quickly so
that | can easily extend them.

As a tester | want to review the unit =
tests in order to verify the coverage.

© Software Quality Lab

www.software-quality-lab.com

q Clean Unit Tests

N uality Requirements

Innovation Meets Quality

F;:J?&;J?ﬁ‘;‘ As a developer | want that a code change
affects only a few unit tests so that | don’t have
[to spend much time with updating unit tests.
efficiency
Compatibility
Usability As a developer | want to add a new unit tests
1SO 25010 | without having to care about side effects.

Portability

Maintainability
As a developer | want to separate

Security unit tests form integration tests so
that | can execute them separately

and have a quick feedback.

Reliability

© Software Quality Lab www.software-quality-lab.com

Q.

hualitg

Innovation Meets Quality

Functional Suitahility

- Trustworthiness
Clean Unit Tests

© Software Quality Lab www.software-quality-lab.com

ﬁ Clean Unit Tests

N uality Be careful with coverage criteria

Innovation Meets Quality

" Test smell

= No reviews
= |ow code coverage

" |mpact .
= A low code coverage (< 50 %) may miss a lot of bugs.
= Developers may select path of least resistance.

= Solution

= Go for high code coverage in components with much logic.
= Monitor test coverage with tools.

© Software Quality Lab www.software-quality-lab.com

ﬁ Clean Unit Tests
N uality Coverage @ Google

Innovation Meets Quality

Per-project coverage

Histogram of average coverage over one month
B Count

Number of projects

O & B A2 A®D 90 A 9%) B O M W@ G P O H R 1T 1° P H P o P P

Coverage (percentage)

The median is 78%, the 75th percentile 85% and 90th percentile 90%.

© Software Quality Lab www.software-quality-lab.com

Q.

Innovation Meets Quality

= Test smell

= Derive test cases from source code.
= Focus only on coverage criteria.

= |Impact

Clean Unit Tests

N uality start with hlack hox test design techniques

= Developers focus on coverage criteria and not on quality of tests.

= You find only a few bugs.

= Solution

= Use black box test design techniques.
= Verify test quality with reviews.

Specification

Unit
Tests

=)

Source Code
as Black Box

© Software Quality Lab

www.software-quality-lab.com

q Clean Unit Tests
N uality Fix failed tests immediately

Innovation Meets Quality

= Test smell

= Some tests are always red. '

= |mpact ’
= Developer scrutinise test results.

m Tests are unstable. ’

= More and more tests will become red.

= Solution

= Fix failed tests immediately.
= Notify developers: “Do it more often if it hurts.”
= Publish test results.

© Software Quality Lab www.software-quality-lab.com

Q.

hualitg

Innovation Meets Quality

Usahility

Clean Unit Tests

© Software Quality Lab www.software-quality-lab.com

ﬁ Clean Unit Tests

N uality Find meaningful test class names

Innovation Meets Quality

" Test smell

® Generic test class name
" e.0.BasicTest,MainTest

= Impact
= [ntention of tests is not clearly visible.
= Not association with class under test.

= Solution
= Pattern: <ClassUnderTest>, “Test’”, [* 7, Function \ Precondition]

= Example: vector.cp
* VectorTest.cpp //all tests in 1 test class
* VectorTest at.cpp //all tests for function at(..)
* VectorTest twoElements.cp //all tests with same precondition

© Software Quality Lab www.software-quality-lab.com

q Clean Unit Tests

N uality Find meaningful unit test names

Innovation Meets Quality

" Test smell

" Generic test method name
" e.g.testfunctionat(...) > atBasic, at basic, atFirst,

= Impact
= Difficult to understand the test
= Difficult to verify requirements coverages

= Solution
/)
TEST (VectorTest, at posSmallerSize elemOfPos)
TEST (VectorTest, at posO_elemOfPosO) {. . . }
TEST (VectorTest, at posSizeMinl elemOfPosSizeMinl) {. . . }
TEST (VectorTest, at posGreaterSize throwsException) {. . . }

© Software Quality Lab www.software-quality-lab.com

ﬁ Clean Unit Tests

N uality Test only one aspect
Innovation Meets Quality
= Test smell
= Assertions on different positions t
= More than one assert in test C e)
= Impact &)
=" |n the case of failure not all asserts are evaluated

» Getting only part of the symptoms
Loss of information that could be helpful for debugging

= Difficult to name test meaningfully |
= Test is difficult to understand (Code)

= Solution failed

= Move each assert into a separate test
= Parameterize tests

© Software Quality Lab www.software-quality-lab.com

q Clean Unit Tests
software

N\ uality 12 Test only one aspect

Innovation Meets Quality

TEST(VectorTest, multipleAsserts) { Move each assert into a

vector<int> vector;

ASSERT_TRUE(vector_istmpty()); SCPaArale test

vector.push back(1234);

int size = vector.size(); rF 9

| |

4

© Software Quality Lab www.software-quality-lab.com

ﬁ Clean Unit Tests

N uality Test only one aspect

Innovation Meets Quality

TEST(LocationTest, convert coordinateWithFormatDegrees stringWithFormatDegrees) {

Location location;

double input = 0.0;

string result = "0.0000";

ASSERT EQ(result, location.convert(input, Location::FORMAT DEGREES));

input = 10.0;

result = "10.0000"; |class LocationTest : public ::testing::TestWithParam<pair<double,const char*> > {

ASSERT EQ(result, 1¢

input = -10.0; };

result = "-10.0000"

ASSERT _EQ(result, LJINSTANTIATE TEST CASE P(PositiveValues, LocationTest, ::testing::Values(

input = 180.0; make pair(0.0,"0.0000"),

result = "180.0000" make pair(10.0,"10.0000"),

ASSERT EQ(result, 1d make pair(180.0, "180.0000")

input = -180.0;));

result = "-180.0000/

ASSERT_EQ(result, LJINSTANTIATE TEST CASE P(NegativeValues, LocationTest, ::testing::Values(
}| make pair(-10.0, "-10.0000"),
T make pair(-180.0, "-180.0000"),

make pair(-18.0, "-18.0000")
));

TEST P(LocationTest, convert coordinateWithFormatDegrees stringWithFormatDegrees) {
Location location;
double input = GetParam().first;
string expect = GetParam().second;
string actual = location.convert(input, Locaticn::FORMAT_DEGREES)J
ASSERT EQ(expect, actual);

© Software Quality Lab www.software-quality-lab.com

q Clean Unit Tests

N uality Avoid logic in tests

Innovation Meets Quality

void LocationTest::getters setters() {
double testValues[3] = { 300.0, 34.12, 43.33 };
Location location;

location.setAltitude(300.0);
if (location.hasAltitude()) {
CPPUNIT ASSERT EQUAL(300.0, location.getAltitude());
location.reset();
for (int i = 0; i < 3; i++) {
switch (i) {

case 0:
location.setSpeed(testValues[i]);
if (location.hasSpeed())
CPPUNIT ASSERT EQUAL(testValues[i], location.getSpeed());
break;
case 1:
location.setLatitude(testValues[i]);
if (location.hasLatitude())
CPPUNIT ASSERT EQUAL(testValues[i], location.getLatitude());
break;
case 2:
location.setLongitude(testValues[i]);
if (location.hasLongitude())
CPPUNIT ASSERT EQUAL(testValues[i], location.getlLongitude());
break;
default:
CPPUNIT FAIL("out of range");
}
}
} else {

CPPUNIT FAIL("location has no altitude");
}

© Software Quality Lab www.software-quality-lab.com

q Clean Unit Tests

N uality Avoid logic in tests
o Test with logic
u TeSt Sme” test_calculate_A_and_B

= jf,while, try-catch, switch,..

= Impact v

Logic is error-prone

= Branches test more than one thing %
" Testis harder to read and understand
m SO I Utl on o Split test into two tests without logic

o . _ _ — —
= Move each assertion into a single test without logic |- | [fes-eoieate s
= Testis sequence of 3 — 7 statements ®

u Bad d@SIgn 9 COmplex teSt test calculate A tcstcal::ulates:l

®

© Software Quality Lab www.software-quality-lab.com

ﬁ Clean Unit Tests

N uality Don’t move assertions to helper functions

Innovation Meets Quality

TEST F(IoTest, ZlibIo) {
const int kBufferSize = 2*1024;
uint8* buffer = new uint8[kBufferSize];
for (int 1 = 0; i < kBlockSizeCount; i++) {
for (int j = 0; j < kBlockSizeCount; j++) {
for (int z = 0; z < kBlockSizeCount; z++) {
int gzip buffer size = kBlockSizes[z];
int size;
{
ArrayOutputStream output(buffer, kBufferSize, kBlockSizes[i]);
GzipOutputStream: :0ptions options;
options.format = GzipOutputStream::ZLIB;

if (gzip buffer size I= -1) {
options.buffer size = gzip buffer size;

}

GzipOutputStream gzout(&output, options);

WriteStuff(&gzout);

gzout.Close();
size = output.ByteCount();

et

ArrayInputStream input(buffer, size, kBlockSizes[j]);
GzipInputStream gzin(

&input, GzipInputStream::ZLIB, gzip buffer size);
ReadStuff(&gzin);

}
¥

delete [] buffer;

}

© Software Quality Lab www.software-quality-lab.com

Q.

hualitg

Innovation Meets Quality

Maintainability

Clean Unit Tests

© Software Quality Lab www.software-quality-lab.com

q Clean Unit Tests

\am uality Enforce test isolation

Innovation Meets Quality

" Test smell
= Constrained test order

[Shared State :Testlliunner :Ve‘ctor
; 1: at_posSmallerSize_elemOfPos :
[| .
Impact S 1 S ,
m Tests fail after introduction of new test g a‘—p°32-g§m0fp°30 ’D
o . < — — — — = = - — = = :
= Tests fail if they are executed in other sequence ——
= Resources in undefined state L
7. at_posGreaterSize_throw sException :
= Solution T T

= Use test fixtures (setup, teardown) |
= All tests in a file must have same precondition | :
= |nit global variables in Setup()

© Software Quality Lab www.software-quality-lab.com

q Clean Unit Tests

N uality Avoid overspecification in tests
= Test smell FALSE
TRUE NO EQ

= Too many assertions
« preconditions
internal behavior
 specific order STREQ
exact string match

= |Impact
= Testis fragile and likely to fall
= Testis harder to read (too much information)
= Test checks too many aspects

= Solution
= Focus on the important aspects

© Software Quality Lab www.software-quality-lab.com

q Clean Unit Tests

N uality Avoid overspecification in tests

Innovation Meets Quality

TEST(LocationManagerTest, getProvider notInitialized throwsLogicErrorWithMessage) {
LocationManager locationManager;
try {
locationManager.getProvider("gps");
FAIL();
} catch (logic error& e) {
ASSERT STREQ("Providers not initialized", e.what());
} catch (exception&) {
FAIL();

}

TEST(LocationManagerTest, getProvider notInitialized throwsLogicError) {
LocationManager locationManager;
ASSERT THROW(locationManager.getProvider(LocationManager::GPS), logic error);

© Software Quality Lab www.software-quality-lab.com

ﬁ Clean Unit Tests

hualitg Summary

Innovation Meets Quality

Functic_)nal
suitability » Be careful with coverage criteria

wy - Start with black box test design techniques
 Fix failed tests immediately

Compatibility
* Find meaningful test class names

Usability * Find meaningful unit test names
» Test only one aspect

. » Avoid logic in tests
POy « Don’t move assertions to helper functions

Maintainability

ISO 25010

« Separate unit from integration tests
« Enforce test isolation
Avoid overspecification in tests

Reliability

© Software Quality Lab www.software-quality-lab.com

Q.

\am uality Clean Unit Tests

Innovation Meets Quality

Request more Clean Unit Test rules from

johannes.hochrainer@software-quality-lab.com

© Software Quality Lab www.software-quality-lab.com

mailto:johannes.hochrainer@software-quality-lab.com

Qualitg

software Quality Lab

INNOVATION MEETS QUALITY

Agnes-Pockels-Bogen 1
D-80992 Miinchen

[T] +49 89 4423066-0
[W] www.software-quality-lab.com

© Software Quality Lab www.software-quality-lab.com

