
The	Limits	to	Tes+ng	

Reinhard	Wilhelm	
Universität	des	Saarlandes	

Reinhard	Wilhelm	
•  studied	math,	physics	and	mathema+cal	logic	at	Wes=älische	Wilhelms-Universität	Münster	and	

Informa+cs	at	Technische	Universität	München	and	Stanford	University	
•  1977	Dr.	rer.	nat	TU	Munich	
•  1978	–	2014	Professor	at	Saarland	University		
•  1990	–	2014	Scien+fic	Director	of	the	Leibniz	Center	for	Informa+cs	at	Schloss	Dagstuhl	
•  1998	cofounder	of		AbsInt	
•  2000	Fellow	of	the	ACM		
•  2006	Alwin-Walther	medal		from	TU	Darmstadt	and	Fraunhofer-Ins+tut	für	Graphische	

Datenverarbeitung		
•  2007	Prix	Gay-Lussac-Humboldt	from	the	French	Minister	of	Educa+on	and	Research	
•  2008	Member	of	the	European	Academy	of	Sciences	(Academia	Europaea)			
•  2008	Honorary	doctorates		from	RWTH	Aachen	and		Tartu	University		
•  2009	Konrad	Zuse	Medal	from	Gesellscha^	für	Informa+k	
•  2010	Bundesverdienstkreuz	am	Bande	(Federal	Order	of	Merit)	
•  2010	ACM	Dis+nguished	Service	Award	
•  2013	Member	of	the	German	Na+onal	Academy	of	Sciences	Leopoldina	

Background	
•  Time	dri^	in	Patriot	rockets	in	1991	[Rounding	error]	

	
•  Crash	of	railway	switch	controller	1995	in	Hamburg-Altona	[Stack	

overflow]	
	

•  Explosion	of	Ariane	5	rocket	1996	[Arithme+c	overflow]	
	

•  AECL	Medical	Therac-25	incident	(1985-1987)	[Arithme+c	overflow]	
	

•  Toyota	Unintended	Accelera+on	Accidents	(2000	–	2010)	[Stack	
overflow]	
	

3	 These	types	of	errors	are	hard	to	detect	by	tes+ng	

Structure	of	the	Talk	

•  Formal	Verifica+on	Methods	
•  Tes+ng	
•  Limits	to	Tes+ng	
•  Performance	Tes+ng	vs.	Verifica+on	of	Real-Time	
Requirements	

Formal	Verifica+on	
of	Safety-Cri+cal	Systems	

Given	the	task	to	verify	some	correctness	statement	about	a	program	
•  the	func@onal	correctness	of	a	program,	
•  the	absence	of	run-@me	errors,	
•  the	sa+sfac+on	of	space	constraints,	or	
•  the	sa+sfac+on	of	@ming	constraints	
	
Verifica@on	is	used	here	in	a	strong	sense!		

	We	look	for	guarantees.	
	No	doubts	about	verified	correctness	claims!	

	
•  What	are	the	alterna+ves?	
•  Ques+on:	What	are	you	doing	in	prac+ce?	

non-func+onal	
correctness	
proper+es	

Approaches	to	Func+onal	Verifica+on	
Star+ng	Point:	
Correctness	statements	
concern	all	(or	some	
specified	subset	of)	
behaviours	of	
the	program	

all	behaviours	of	
the	program	

Deduc+ve	Verifica+on	
Func+onal	correctness	proved	by	Theorem	Proving		

•  done	for	highly	safety-cri+cal		
systems,	e.g.	
•  PKI	key	gen.,		
•  So^ware	of		

Paris	Metro,	
•  CompCert,	

verified	C		
compiler	

		

all	behaviours	of	
the	program	

all	behaviours	of	
the	program	

Problem:	not	automatable	
requires	complex	user	
interac+on,	realis+c	in		

academic	senng	or	
with	highly	skilled		

verifica+on	specialists	

a	correct	compiler	is	the	mother	of	all	verifica+on	
and	tes+ng	ac+vi+es	on	the	source	level!		

Tes+ng	
(for	func+onal	and	non-func+onal	proper+es)	

•  Test	the	program	on	a	number	of	inputs	
•  coverage	criteria	
increase	the		
chance		to		
find	bugs	

all	behaviours	of	
the	program	

	
test	cases	

Principal	
Limita@on:	

Program	tes+ng	
can	be	used	to	

show	the	
presence	of	bugs,	
but	never	to	show	
their	absence!		
Dijkstra	(1970)	

Undetected	fault:	
False	posi+ve	

Detected	fault	

Ques+on:	
Program	free	of	a	certain	type	of	error?	
•  false	posi@ve:	answer	wrongly	“Yes”	
•  false	nega@ve:	answer	wrongly	“No”	
	

Bug	Chasing		
Ques+on:	Is	program	free	of	bugs?	

Asempt	to	(quickly)	find	
as	many	bugs	as	possible	

chased	area	

Undetected	bug:	
False	posi+ve	

Reported	bug:	
False	nega+ve	(false	alarm)	

Detected	bug	

all	behaviours	of	
the	program	

	
	

Bug	chasing	tools,	
o^en	called		

sta@c	analysers	
are	unsound,	i.e.	
do	not	detect	all	
bugs,	and	o^en	
imprecise,	i.e.,	
produce	many	
false	nega+ves	

all	behaviours	of	the	
program	

Model	Checking	
Safety	proper@es,	something		bad	cannot	happen,	
formalized	in	temporal	logic,	
checked	on	abstract	
model	of	system.	
Problem:		
•  Complexity	
•  Bug	chasing	

instead		

Spurious	error,	
output:	error	trace	

Infeasible		
behaviours	

All	viola+ons	
detected	

all	behaviours	of	
the	program	

Sound	Sta+c	Program	Analysis	
(Abstract	Interpreta+on)	

Verify	safety	proper@es,	something		bad	cannot	happen,	
by	over-approxima@on.	
If	property	holds	for	
the	over-approx.	
it	holds	for	all	
behaviours.	

Warning:	
False	Nega+ve	

Infeasible		
behaviours	

All	viola+ons	
detected	

Some	(Non-Func+onal)	Safety	Proper+es	

Absence	of	run-@me	errors	(at	program	points)	
•  division	never	by	0	
•  sqrt	never	of	a	nega+ve	number	
•  arithme+c	opera+on	never	causes	overflow/underflow	
•  array-index	is	never	out	of	bounds	
•  dereference	never	applied	to	null-pointer	
Stacks	do	never	overflow	
Absence	of	@ming	accidents	(for	instruc+ons)	for	WCET	analysis	
•  memory	access	never	misses	cache	
•  pipeline	unit	is	always	available	for	dispatch	of	opera+on	
•  bus	access	is	not	blocked	
Derived	global	program	proper+es	
•  program	terminates	within	a	given	deadline	

Admised	Methods	for	Automo+ve	Systems:	
according	to	ISO-26262	

13	

Excerpt	from:		
Final	Dra)	ISO	26262-6	Road	vehicles	-	Func9onal	safety	–	
Part	6:	Product	development:	So)ware	Level.		
Version	ISO/FDIS	26262-6:2011(E),	2011.		

sound,	i.e.,	can	
give	a	guarantee	

-	
-	
-	
+	
-	
-	
-	
+	

Tes+ng		
•  func@onal	tes@ng	–	tes+ng	the	input-output	behavior	against	the	

specifica+on		
–  o^en	on	the	basis	of	a	valida+on	suite	

•  non-func@onal	tes@ng	
–  in	par+cular	performance	tes@ng	

•  tes@ng	to	locate	bugs		
–  coverage	criteria	to	increase	the	chance	to	catch	bugs	

func+on	

statement	

branch	

condi+on	

MCDC	

full	path	
coverage	

LCSAJ	

Verifying	Real-Time	Requirements	
•  by	using	tes+ng	

–  special	case	of	performance	tes+ng	
–  performed	by	measurement-based	methods	
	
	
	
	
	
	
	
	
	
	

•  complexity	prevents	compu+ng	exact	WCET	
•  no	guarantees!	

WCET	

2.	limit	of	tes+ng	

Architecture	

So^ware	

ini+al	
state	

Input	

Sound	+ming	analysis	determines	upper	bound	instead	

Loops	

•  Programs	spend	their	+me	in	loops	(and	in	recursion)	
Assump+on:		ET(loop)	=	#itera+ons	x	(ET(cond)	+ET(body)	

•  How	do	we	know		#itera+ons?	
–  Program/Developer/Model/Sta+c	Analysis	

•  What	is	the	impact	of	coverage	criteria	on	WCET	
determina+on?	

•  Even	path	coverage	executes	loop	body	only	once	
•  But:	ET(body)	varies	heavily	–	first	itera+on	loads	the	
cache,	consecu+ve	itera+ons	profit	è	considering	first	
itera+on	leads	to	overes+ma+on		

3.	limit	of	tes+ng	

none!	

4.	limit	of	tes+ng	

for	automa+on:	AbsInt’s	value	analysis	

How	to	do	(Sound)	Timing	Analysis	

The	Problem	
Given:	
1.  a	so^ware	to	produce	a	reac+on,		
2.  a	hardware	pla=orm,	on	which	to	execute	the	

so^ware,	
3.  a	required	reac+on	+me.	
Derive:	a	guarantee	for	+meliness.	
	
	

Timing	(WCET)	Analysis	
•  Sound	methods	that	determine	upper	bounds	for	all	

execu+on	+mes,	
•  can	be	seen	as	the	search	for	a	longest	path,		

–  through	different	types	of	graphs,	
–  through	a	huge	space	of	paths.	

I	will	show		
1.  how	this	huge	state	space	originates,	
2.  how	and	how	far	we	can	cope	with	this	huge	state	space.	

High-Performance	Microprosessors	
•  increase	(average-case)	performance	by	using:		
Caches,	Pipelines,	Branch	Predic+on,	Specula+on	

•  These	features	make	+ming	analysis	difficult:	
Execu+on	+mes	of	instruc+ons	vary	widely	
–  Best	case	-	everything	goes	smoothly:	no	cache	miss,	operands	
ready,	resources	free,	branch	correctly	predicted	

– Worst	case	-	everything	goes	wrong:	all	loads	miss	the	cache,	
resources	are	occupied,	operands	not	ready	

–  Span	may	be	several	hundred	cycles	

Variability	of	Execu+on	Times	
LOAD r2, _a

LOAD r1, _b

ADD r3,r2,r1

0

50

100

150

200

250

300

350

Best Case Worst Case

Execution Time (Clock Cycles)

Clock Cycles

PPC 755

x = a + b;

In	most	cases,	execu+on	
will	be	fast.	
So,	assuming	the	worst	case	
is	safe,	but	very	pessimis+c!	

PPC	755	

State-dependent	Execu+on	Times	
•  Execu+on	+me	of	an	instruc+on	depends	on	

the	execu+on	state,	e.g.	
–  execu+on	of	instruc+on	fetch	depends	on								I-

cache	state	and	on	bus	occupa+on	and	on	
memory	state	

•  Execu+on	state	results	from	the	execu+on	
history	
–  knowing	the	ini+al	state	and	the	execu+on	history	

we	would	know	the	execu+on	state	and	the	
execu+on	+me	of	the	instruc+on	

–  however,	there	may	be	many	execu+on	histories	
leading	to	the	execu+on	of	the	instruc+on	

seman@cs	state:	
values	of	variables	

execu@on	state:	
occupancy	of		
resources	

state	

Architecture	

Timing	Analysis	–	the	Search	Space	
with	State-dependent	Execu+on	Times	

•  all	control-flow	paths	–	depending	on	the	
possible	inputs	

•  all	paths	through	the	architecture	for	
poten+al	ini+al	states	

So^ware	

Input	

ini+al	
state	

mul rD, rA, rB execu+on	states	for	paths	
reaching	this	program	
point	

instruc+on	
in	I-cache	

instruc+on	
not	in	I-cache	

1	

bus	occupied	

bus	not	occupied	

small	operands	

large	operands	

1	

4	

≥ 100

Architecture	

Timing	Analysis	–	the	Search	Space	
with	out-of-order	execu+on	

•  all	control-flow	paths	–	depending	on	the	
possible	inputs	

•  all	paths	through	the	architecture	for	
poten+al	ini+al	states	

•  including	different	schedules	for	instruc+on	
sequences	

So^ware	

Input	

ini+al	
state	

Architecture	

Timing	Analysis	–	the	Search	Space	
with	mul+-threading	

•  all	control-flow	paths	–	depending	on	the	
possible	inputs	

•  all	paths	through	the	architecture	for	
poten+al	ini+al	states	

•  including	different	schedules	for	instruc+on	
sequences	

•  including	different	interleavings	of	accesses	
to	shared	resources	

So^ware	

Input	

ini+al	
state	

Why	Exhaus+ve	Explora+on?	
•  Naive	asempt:	follow	local	worst-case	transi+ons	only	
•  Unsound	in	the	presence	of	Timing	Anomalies:	
A	path	star+ng	with	a	local	worst	case	may	have	a	lower	
overall	execu+on	+me,	
Ex.:	a	cache	miss	preven+ng	a	branch	mis-predic+on	

•  Caused	by	the	interference	between	processor	
components:		
Ex.:	cache	hit/miss	influences	branch	predic+on;		
branch	predic+on	causes	prefetching;	prefetching	pollutes	
the	I-cache.		

Tool	Architecture	

Sta+c	Program	Analysis	

Sta+c	Program	Analysis	 Integer	Linear	
Programming	

determines
enclosing intervals

for the values in
registers and local

variables

determines loop
bounds determines

infeasible
paths

derives invariants about
architectural execution states,

computes bounds on execution
times of basic blocks

determines a worst-
case path and an

upper bound

Timing	Accidents	and	Penal+es	
Timing	Accident	–	cause	for	an	increase	of	the	
execu+on	+me	of	an	instruc+on	

Timing	Penalty	–	the	associated	increase	
•  Types	of	+ming	accidents	

– Cache	misses	
– Pipeline	stalls	
– Branch	mispredic+ons	
– Bus	collisions	
– Memory	refresh	of	DRAM	
– TLB	miss	

Our	Approach	
•  Execu+on	+me	of	an	instruc+on	depends	on	the	

execu+on	state	
•  Execu+on	state	results	from	the	execu+on	

history	
•  We	use	Sta+c	Analysis	of	Programs	for	their	

behavior	on	the	execu+on	pla=orm	
•  It	computes	invariants	about	the	set	of	all	

poten+al	execu+on	states	at	all	program	points,	
•  by	exploring	all	execu+on	histories	in	parallel	

seman@cs	state:	
values	of	variables	

execu@on	state:	
occupancy	of		
resources	

state	

Deriving	Run-Time	Guarantees	

•  Our	method	and	tool	derives	Safety	Proper+es	from	
these	invariants	:		
Certain	+ming	accidents	will	never	happen.	
Example:	At	program	point	p,	instruc+on	fetch	will	
never	cause	a	cache	miss.	

•  The	more	accidents	excluded,	the	lower	the	upper	
bound.	

Murphy’s	
invariant	

Fastest Variance of execution times Slowest

Tremendous	Progress	
	

1995 2002 2005

ov
er

-e
st

im
at

io
n

20-30%
15%

30-50%

4

25

60

200

ca
ch

e-
m

is
s p

en
al

ty

Lim et al. Thesing et al. Souyris et al.

The explosion of penalties has been compensated
by the improvement of the analyses!

10%

25%

State	Space	Explosion	in	Timing	Analysis	

constant	
execu+on	
+mes	

state-dependent	
execu+on	+mes	

out-of-order	
execu+on	

preemp+ve	
scheduling	

concurrency	+	
shared	resources	

years +
methods ~1995 ~2000 2010 and on

Timing schemata Static analysis ???

Is	All	Lost?	
How	could	one	get	(halfway)	precise	+ming	es+mates?	
•  No	guarantees,	though	
•  Based	on	the	facility	to	extract	traces	including	+me	stamps,	e.g.	

NEXUS	
•  Needs	loop	bounds	from	Value	Analysis	
•  Rough	idea:	determine	end-to-end	execu+on	+mes	of	traces	
•  iden+fy	associated	program	paths,		
•  Map	control	flow	to	an	Integer	Linear	Program	(ILP)	
•  Determine	worst-case	path	by	solving	the	ILP	

But	

•  O^en	bandwidth	problems	for	tracing	HW	
•  Unclear	contribu+on	of	asynchronous	events,	e.g.	DRAM	
refresh	

•  Complex	control-flow	structure	compared	to	basic-block	
graph	

Conclusions	
Performance	tes+ng	in	the	form	of	measurement-based	@ming	analysis	
cannot	derive	guarantees	
Sound	@ming	analysis	delivers	guarantees	for	quite	complex	processors	
Current	architectural	trends	
•  unpredictable	cores	
•  mul@-core	architectures	with	shared	resources	
•  reduced	observability	
do	not	allow		
•  sound	@ming	analysis	with	acceptable	effort	and	desired	precision	
•  reduce	precision	for	performance	es@ma@on	
	
	
	

•  The	problem	remains	
•  The	possibility	to	solve	it	disappears	

Literature	
•  C.	Ferdinand	et	al.:	Reliable	and	Precise	WCET	Determina9on	of	a	

Real-Life	Processor,	EMSOFT	2001		
•  R.	Wilhelm	et	al.:	The	Determina9on	of	Worst-Case	Execu9on	Times	-	

Overview	of	the	Methods	and	Survey	of	Tools.	ACM	Transac+ons	on	
Embedded	Compu+ng	Systems	(TECS)	7(3),	2008.		

•  R.	Wilhelm	et	al.:	Memory	Hierarchies,	Pipelines,	and	Buses	for	
Future	Architectures	in	Time-cri9cal	Embedded	Systems,		IEEE	TCAD,	
July	2009	

•  Mingsong	Lv	et	al.	:	A	Survey	on	Cache	Analysis	for	Real-Time	
Systems,	LITES	2016	

•  hsps://www.absint.com/ait/	

