Resource Usage on Evolving Software

—_—
~~ (Durchgangige Berticksichtigung des Ressourcenverbrauchs durch
' automatische statische Analyse)

Jorg Herter
AbsInt GmbH

2016
\ e

— -

Software Quality

= Embedded control systems must satisfy high quality objectives.

= Software failures can
= in general: cause high costs, e.g. due to recall campaigns
= in safety-critical systems: endanger human beings

= In highly safety-critical systems software test and validation
responsible for significant part of development costs (= 50%).

= Challenge: ensure system safety at reasonable costs.

= The cost of a software defect is related to the time it is discovered:
the later a bug is found, the higher the costs to fix it.

= Verification activities should be performed continuously during the
development process to detect critical errors and prevent
late-stage integration problems.

€l Absint

@
Functional Safety
= Demonstration of functional correctness Rewamﬁ by
= Well-defined criteria B / DO-178C /
» Automated and/or model-based testing ES@“'%%? EN-90128,

» Formal techniques: model checking, theorem proving [EC-61308

= Satisfaction of non-functional requirements

= No crashes due to runtime errors (Division by zero, ﬁeweﬁ W
invalid pointer accesses, overflow and rounding errors) U
= Resource usage:
= Timing requirements (e.g. WCET, WCRT) EEG 6@5‘8
= Memory requirements (e.g. no stack overflow)
> Insufficient: Tests & Measurements
= Test end criteria unclear
= No full coverage possible
= "Testing, in general, cannot show the absence of errors." [DO-178B]

= Formal technique: abstract interpretation finds the worst case and
can provide guarantees.

€l Absint

@
Non-Functional Software Failures

Time drift in Patriot missles in 1991
» Floating-point rounding error

Crash of railway switch controller 1995 in Hamburg-Altona
» Stack overflow

Explosion of Ariane rocket 1996
» Arithmetic overflow

USS Yorktown cruiser propulsion system failure 1997
» Divide by zero

Toyota Camry 2004 Unintended Acceleration
» Stack overflow, memory corruption

€l Absint

Automotive: ISO-26262

Table 1 — Topics to be covered by modelling and coding guidelines

ASIL

Topics
A B c D

1a |Enforcement of low complexity ++ ++ ++ ++

1b | Use of language subsets® ++ ++ ++ ++

b The objectives of method 1b are
— Exclusion of ambiguously defined language constructs which might be interpreted differently by different modellers,
programmers, code generators or compilers.
— Exclusion of language constructs which from experience easily lead to mistakes, for example assignments in conditions
or identical naming of local and global variables.
— Exclusion of language constructs which might result in unhandled run-time errors.

7.4.17 An upper estimation of required resources for the embedded software shall be made, including:
a) the execution time;

b) the storage space; and

Excerpt from:
ISO 26262-6 Road vehicles - Functional safety —
Part 6: Product development: Software Level, 2011.

Criticality levels:
A(lowest)

to

D (highest)

€l Absint

SW Unit Design & Implementation

Table 9 — Methods for the verification of software unit design and implementation

c

d

Methods 1e and 1f can be applied at the source code level. These methods are applicable both to manual code development and
to model-based development.

Methods 1e and 1f can be part of methods 1d, 1g or 1h.

Method 1h is used for mathematical analysis of source code by use of an abstract representation of possible values for the
variables. For this it is not necessary to translate and execute the source code.

Methods ASIL

A B Cc D
1a |Walk-through? ++ + o 0
1b |Inspection® + +4 ++ +
1c | Semi-formal verification + + ++ T+
1d | Formal verification o 0 + +
1e | Control flow analysisbc + + ++ ++
1f | Data flow analysis®® + + ++ .
1g |Static code analysis + ++ ++ T+
1h |Semantic code analysisd + + + +
2 In the case of model-based software development the software unit specification design and implementation can be verified at the
model level.
b

Excerpt from:

Final Draft ISO 26262-6 Road vehicles - Functional safety —
Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.

€l Absint

Static Program Analysis

= General Definition: results are only computed from the
program structure, without executing the program under
analysis.

= Analysis scope
= Binary code: worst-case execution time, worst-case stack usage
= Source code: violations of coding rules, runtime errors

= General advantage:

= No need to perform time-consuming measurements on physical
hardware

= Well-suited for continuous verification

€l Absint

Static Program Analysis

= Analysis depth:
= Syntax-based: Style checkers (e.g. MISRA-C)

= Unsound semantics-based: Bug-finders / bug-hunters.
= Can find some bugs, but cannot guarantee that all bugs are found.
= E.g. Coverity CMC, Klocwork K7, CodeSonar, Polyspace Bug Finder,

= Sound semantics-based / Abstract Interpretation-based

= Can guarantee that all bugs (from the class under analysis) are
found.

= Results valid for every possible program execution with any
possible input scenario.

= Examples: aiT WCET Analyzer, StackAnalyzer,
Polyspace Code Prover, Astrée.

€l Absint

@
Model-based Software Development

= Application graphically specified
by data flow diagrams and/or
finite state machines

= Model is software specification
and has executable semantics

» Automated & integrated
development tools:

= automatic target code generation (typically C code)
= automatic simulation / model-based testing
= formal verification at model level

= Examples: Esterel SCADE, Matlab/Simulink + dSPACE TargetLink
= BUT: Higher level of abstraction than with programming in C.

» What about timing, memory consumption,
runtime errors, integration issues?

€l Absint

Mastering Resource Usage
in Evolving Software

10

€l Absint

11

Real-Time Systems

= Controllers in planes, cars, plants, ... are expected to finish
their tasks within reliable time bounds.

= Hence, it is essential that an upper bound on the execution
times of all runnables/tasks is known.

= Commonly called the Worst-Case Execution Time (WCET).
= Schedulability analysis must be performed.
» Worst-Case Response Time (WCRT)

» Hard real-time systems: deadline violations
can have catastrophic consequences.

) },
/\ \

€l Absint

The Timing Problem

% LOAD r2, _a %
x=a+b; . LoAD r1, b
% ADD r3,r2,rl %
68000 (1990) MPC 5xx (2000) PPC 755 (2001)
Execution Time (Clock Cycles) Execution Time depending on Flash Memory Execution Time (Clock Cycles)
(Clock Cycles)

350

300

250

200

150

100

50

30

20

10

B Clock Cycles

350

300

250

200

150

100

50

B Clock Cycles

ﬁ Absint

Probability
A

y vV V \ 4 \ 4 \ 4

g @ _—
The Timing Problem
Unsafe Safe upper bound
execution time for worst-case
measurements execution time (aiT)
Exact worst-case
- execution time

>

T ==

WCET Estimates
(TimingProfiler)

€l Absint

14

@
aiT WCET Analyzer
= Global static program analysis by Abstract Interpretation (sound): * I
microarchitecture analysis (caches, pipelines, ...) + value analysis x
= Integer linear programming for path analysis IS'ii

» Safe and precise bounds on the worst-case execution time (WCET) Firer

Application Code Specifications (*.ais) Worst Case Execution Time
+ Visualization, Documentation

Compiler
Linker = Ee=== |

Executable

(*.elf /*.out) N

EB Fe / l
52 0 —

90 8¢

AE Ff Entry Point

€l Absint

15

@
From aiT to TimingProfiler

= ail is designed to give timing guarantees
= High precision
= In-depth modelling of microprocessor architecture
= Extensively validated

» Requires exact microcontroller variant and detailed configuration to
be known

= In early design stages
= Precise microcontroller variant & configuration may not be fixed yet
= Estimations of the WCET are sufficient
= Timing information must be available with low computing effort
= User interaction must be minimal
» Solution: TimingProfiler

€l Absint

16

@
TimingProfiler Characteristics

Based on a representative core implementing the target
Instruction set
= No in-depth modelling of each specific core + peripherals

Defaults for hardware configuration provided
= No user specification needed
= Can be adapted by users, if desired

Defaults for software characteristics provided

= Default loop and recursion bounds are provided if exact bound not
known

= Can be refined by users, if desired

Computation time and memory requirements minimized
= Pipelines analysis follows local worst-case
= Much faster than safe analysis, but typically close to safe

It Y
e €l Absint

17
O

TimingProfiler Workflow

= Global static program analysis:

microarchitecture analysis (caches, pipelines, ...) + value analysis
= Integer linear programming for path analysis
» Estimates on the worst-case execution time (WCET)

Application Code Specifications (*.ais)

variable++;

next++:

do this;

Compiler =L

Linker

Executable

(*.elf /*.out) I

EB F¢ /
52 0Of

90 8(

AE Ff Entry Point

Worst Case Execution Time Estimate
+ Visualization, Documentation

€l Absint

18

Result Exploration

Visualization of call and control flow graph with timing
information for critical path, functions, basic blocks.

Table overview of direct vs. cumulative execution time for
each function: context-insensitive and context-sensitive

= What is maximal contribution of function in all potential execution
contexts?

= What is contribution of function when called from A vs. called from B?

Executable browser: information about variables (names,
types, address, size), sections (code/data, access rights,
allocated/relocated, ...)

Variable usage statistics based on counting memory accesses
on WCET path

Memory map explorer: size and contents of memory areas

€l Absint

19
|

Integration in the Development Process

Batch mode execution enables TimingProfiler to be used in
continuous integration environments

= fully automatic tool execution

= continuous profiling of timing behavior per night/build/commit/...
Result and configuration files available in open XML formats

TimingProfiler can be complemented by StackAnalyzer in the
same GUI (a3), enabling continuous timing and stack analysis.

Tool coupling to SymTA/S enables seamless system-level
timing analysis from instruction level to interECU end-to-end
times.

Tool coupling to dSPACE TargetLink enables continuous timing
monitoring during model-based development.

€l Absint

20

The a3 Jenkins Plug-In ¢4

.
Provides automatic integration of TimingProfiler in the
Continuous Verification Framework Jenkins

One-click installation

Easy to configure

Fully integrated

Features:
= Configure an analyzer run as a Jenkins build step.

= Automatically mark build step as erroneous depending on analysis
results and pedantic levels.

= Generate analysis reports directly in your Jenkins workspace.
= Access analysis results via the Jenkins web interface.

€l Absint

21

TimingProfiler Benefits

= Provides continuous feedback about timing behavior during
development

= Enables significant reduction of effort compared to trace
and measurement-based timing testing

= Available even at stages where application is not mature
enough for timing measurements

= Intuitive graphical exploration of execution time
distribution, time-critical paths, and variable usage

= Can be seamlessly integrated in development process and
continuous verification frameworks

= Enables time-conscious software development
= Avoids late-stage integration problems

€l Absint

22

Worst-Case Stack Usage Analysis

€l Absint

Zs

The Stack Usage Analysis Problem

In embedded systems the required stack space has to be reserved for
each task at configuration time => maximal stack usage has to be
statically known.

Underestimating the maximal stack usage can cause stack overflows.
Stack overflows are severe errors:

= they can cause wrong reactions and program crashes,

= they are hard to recognize,

= they are hard to reproduce and fix.

Overestimating the maximal stack usage means wasting resources
(storage space, energy consumption, weight, money).

Testing is error-prone and expensive
= Typical stack usage of a task can be very different from maximum stack usage.

= Dynamic testing (e.g. stack pollution checks) typically cannot guarantee that the
worst case stack usage has been observed.

€l Absint

24

@
Computing the Worst-Case Stack Height

= StackAnalyzer computes safe upper bounds of the stack
usage of the tasks in a program for all inputs

= Static program analysis based on Abstract Interpretation

Application Code Specifications (*.ais) Worst Case Stack Usage
BRI s + Visualization, Documentation
l A~ StackAnalyzer ‘_I_ i
Compiler T — | [k _f_” = = | __
Linker N Sl ==t B
L e —
Executable :
(*.elf /*. OLV
EB F¢ /
56 8
4E Ff Entry Point

€l Absint

Demonstrating the
Absence of Runtime Errors
in Evolving Software

25

€l Absint

26

The Astree Analyzer

Sound static Analyzer based on Abstract Interpretation designed to

prove the absence of runtime errors and data races in C programs

(C99 standard)

= If Astrée does not report any alarm (potential runtime error / data
race) this is a formal proof that there are no such errors in the code.

Reference customer: Airbus flight control software (DO-178B level A).
No false alarm on >755.000 LOC, analysis time 6h.

Automatic tool qualification according to ISO-26262, DO-178B/DO-
178C, IEC-61508, IEC-60880, etc. by Qualification Support Kits (QSK)
and Qualification Software Life Cycle Data reports (QLSCD).

Support for model-based code generation; tool couplings to dSPACE
TargetLink, model link to MATLAB/ SIMULINK available.

Open formats, full continuous verification support.

€l Absint

—

17961:2013

— The Astrée Rulechecker

= Check for compliance with coding rules
= Support for MISRA C:2004, MISRA C:2012, CERT, CWE, and ISO/IEC

4, Astrée - Example 3: dhrystone (1)
- - Project Analysis Editors Tools Help
3 | P
Determine code metrics “E=T ¢+ #2000 ¢+ o
Example 3: dhrystone =
Welcome
Configuration Findings/F | Rule violations Reachability rics | Dota

and checks for

threshold violations

= Includes common
HIS metrics with compliant

default thresholds.
= E.g.: comment density, -
cyclomatic complexity,

“ »
: V| Display only rules and checks with more than | 0 violations
L] L] iral H 1s
xtensible architecture ==

= Configurable rules
= User-defined sets of coding rules

can be added (engineering service by AbsInt).

The Astrée Analyzer

= Sound static analysis based on
abstract interpretation to prove

absence of runtime errors.

= Astrée detects all runtime errors

with few false alarms:
= Array index out of bounds
= Int/float division by 0
= Invalid pointer dereferences

= Arithmetic overflows and wrap-arounds

28

4, Astrée - Dhrystone (1]
AEEO 272 000@ €»CN

===== & Overview

nnnnnnnnnnnnnnn

Duration:

= Floating point overflows and invalid operations (Inf and NaN)

= Uninitialized variables
= Data races, inconsistent locking

non-terminating loops

+ Floating-point rounding errors taken into account
+ User-defined assertions, unreachable code,

€l Absint

29

The Astrée Jenkins Plug-In

4
(")
L

)y
e

Provides automatic integration of Astrée in the Continuous
Verification Framework Jenkins

One-click installation
Easy to configure
Fully integrated
Features:

Configure an analyzer run as a Jenkins build step.
Launch Astrée analysis as newly created analysis revision.

Automatically mark build step as erroneous depending on the
categories and statuses of findings.

Generate analysis reports directly in your Jenkins workspace.
Access analysis results via the Jenkins web interface.

€l Absint

30

Development Process

ltern testing .
4.7 System design k 4-8 ltem integration and

g e
Q)% Test phase testing Q's.
A 1Y venfication &
’.rj\ \\ ,S?

. Desmn phase it
= '-'en%tsghon @

y N\ N NN o)
‘X
b-6 Specification of Software testing
software safety e - StaC kAn al yzer
requirements \ Test phase / ______ s
z b
l‘:l \ Ve
: veomense \ & T WCET Analyze Astrée
T3 verfication %
3 2 o
3 8 ®
T“:' @ ’-’"
e = >
e o
T’\: @«
w0
Excerpt from:

Final Draft ISO 26262-6 Road vehicles - Functional safety —
Part 6: Product development: Software Level.
Version ISO/FDIS 26262-6:2011(E), 2011.

ﬁ Absint

Conclusions

= Static analysis is ideally suited for continuous verification
activities throughout the software development stage

= TimingProfiler provides continuous feedback about the
timing behavior without accessing physical hardware and
without need to stimulate, test and measure
» Enables time-conscious software development

» Avoids late-stage integration problems

= StackAnalyzer provides continuous feedback about the

stack consumption without accessing p

nysical hardware

and without need to stimulate, test and

Measure

» Enables time-conscious software development

> Avoids late-stage integration problems

€l Absint

Conclusions continued

= Astrée provides a history-aware analysis concept which
records the evolution of the analyzer configuration and
links it to the software evolution
> Easily determine differences between analysis revisions
> Easily adapt analyzer configuration to new source code versions

» Analysis results on previous software versions
easily reproducible

€l Absint

€l Absint

email: info@absint.com
http://www.absint.com

