
SWQL Präsentationsvorlage V10.0

© Software Quality Lab www.software-quality-lab.com

Johannes Hochrainer
Senior Consultant & Trainer

johannes.hochrainer@software-quality-lab.com

Clean Unit Tests

- 1 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Clean Unit Tests

What does “clean” mean?

- 2 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Clean Unit Tests

- 3 -

Requirements

ISO 25010

Functional
suitability

Performance
efficiency

Compatibility

Usability

Portability

Maintainability

Security

Reliability

As a product owner I want that all requirements are

tested so that the customer gets what he wants.

As a test manager I want that unit tests

are derived systematically from

requirements so that nobody doubts the

quality of the tests.

As a developer I want to have a

trustworthy feedback after a

change so that I can work faster.

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Clean Unit Tests

- 4 -

Requirements

ISO 25010

Functional
suitability

Performance
efficiency

Compatibility

Usability

Portability

Maintainability

Security

Reliability

As a freshman I want to read unit tests

in order to learn the software.

As a developer I want to understand the

unit tests of my colleagues quickly so

that I can easily extend them.

As a tester I want to review the unit

tests in order to verify the coverage.

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Clean Unit Tests

- 5 -

Requirements

ISO 25010

Functional
suitability

Performance
efficiency

Compatibility

Usability

Portability

Maintainability

Security

Reliability

As a developer I want that a code change

affects only a few unit tests so that I don’t have

to spend much time with updating unit tests.

As a developer I want to add a new unit tests

without having to care about side effects.

As a developer I want to separate

unit tests form integration tests so

that I can execute them separately

and have a quick feedback.

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Clean Unit Tests

Functional Suitability
 Trustworthiness

- 6 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Be careful with coverage criteria
Clean Unit Tests

 Test smell
 No reviews

 Low code coverage

 Impact
 A low code coverage (< 50 %) may miss a lot of bugs.

 Developers may select path of least resistance.

 Solution
 Go for high code coverage in components with much logic.

 Monitor test coverage with tools.

- 7 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Coverage @ Google
Clean Unit Tests

- 8 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Start with black box test design techniques
Clean Unit Tests

 Test smell
 Derive test cases from source code.

 Focus only on coverage criteria.

 Impact
 Developers focus on coverage criteria and not on quality of tests.

 You find only a few bugs.

 Solution
 Use black box test design techniques.

 Verify test quality with reviews.

- 9 -

Unit

Tests
derive test

Specification Source Code

as Black Box

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Fix failed tests immediately
Clean Unit Tests

 Test smell
 Some tests are always red.

 Impact
 Developer scrutinise test results.

 Tests are unstable.

 More and more tests will become red.

 Solution
 Fix failed tests immediately.

 Notify developers: “Do it more often if it hurts.”

 Publish test results.

- 10 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Clean Unit Tests

Usability

- 11 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Find meaningful test class names
Clean Unit Tests

 Test smell
 Generic test class name

 e.g. BasicTest, MainTest

 Impact
 Intention of tests is not clearly visible.

 Not association with class under test.

 Solution
 Pattern: <ClassUnderTest>, “Test”, [“_”, Function \ Precondition]

 Example: Vector.cp
• VectorTest.cpp //all tests in 1 test class

• VectorTest_at.cpp //all tests for function at(..)

• VectorTest_twoElements.cp //all tests with same precondition

- 12 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Find meaningful unit test names
Clean Unit Tests

 Test smell
 Generic test method name

 e.g. test function at(…)  atBasic, at_basic, atFirst, …

 Impact
 Difficult to understand the test

 Difficult to verify requirements coverages

 Solution

TEST(VectorTest, at_posSmallerSize_elemOfPos) {. . . }

TEST(VectorTest, at_pos0_elemOfPos0) {. . . }

TEST(VectorTest, at_posSizeMin1_elemOfPosSizeMin1) {. . . }

TEST(VectorTest, at_posGreaterSize_throwsException) {. . . }

Given When Then

- 13 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Test only one aspect
Clean Unit Tests

 Test smell
 Assertions on different positions

 More than one assert in test

 Impact
 In the case of failure not all asserts are evaluated

• Getting only part of the symptoms

• Loss of information that could be helpful for debugging

 Difficult to name test meaningfully

 Test is difficult to understand

 Solution
 Move each assert into a separate test

 Parameterize tests

- 14 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Test only one aspect
Clean Unit Tests

Move each assert into a
separate test

TEST(VectorTest, multipleAsserts) {
vector<int> vector;
ASSERT_TRUE(vector.isEmpty());
vector.push_back(1234);
int size = vector.size();
ASSERT_EQ(1, size);

}

TEST(VectorTest, isEmpty_justInit_empty) {
vector<int> vector;
ASSERT_TRUE(vector.isEmpty());

}

TEST(VectorTest, size_pushback_sizeIs1AndEmptyIsFalse) {
vector<int> vector;
vector.push_back(1234);
ASSERT_EQ(1, vector.size());
ASSERT_FALSE(vector.isEmpty());

}

- 15 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Test only one aspect
Clean Unit Tests

- 16 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Avoid logic in tests
Clean Unit Tests

- 17 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Avoid logic in tests
Clean Unit Tests

 Test smell
 if, while, try-catch, switch, …

 Impact
 Logic is error-prone

 Branches test more than one thing

 Test is harder to read and understand

 Solution
 Move each assertion into a single test without logic

 Test is sequence of 3 – 7 statements

 Bad design  complex test

- 18 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Don’t move assertions to helper functions
Clean Unit Tests

- 19 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Clean Unit Tests

Maintainability

- 20 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Enforce test isolation
Clean Unit Tests

 Test smell
 Constrained test order

 Shared state

 Impact
 Tests fail after introduction of new test

 Tests fail if they are executed in other sequence

 Resources in undefined state

 Solution
 Use test fixtures (setup, teardown)

 All tests in a file must have same precondition

 Init global variables in Setup()

- 23 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Avoid overspecification in tests
Clean Unit Tests

 Test smell
 Too many assertions

• preconditions

• internal behavior

• specific order

• exact string match

 Impact
 Test is fragile and likely to fail

 Test is harder to read (too much information)

 Test checks too many aspects

 Solution
 Focus on the important aspects

- 24 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Avoid overspecification in tests
Clean Unit Tests

- 25 -

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Clean Unit Tests

- 26 -

Summary

ISO 25010

Functional
suitability

Performance
efficiency

Compatibility

Usability

Portability

Maintainability

Security

Reliability

• Be careful with coverage criteria

• Start with black box test design techniques

• Fix failed tests immediately

• Find meaningful test class names

• Find meaningful unit test names

• Test only one aspect

• Avoid logic in tests

• Don’t move assertions to helper functions

• Separate unit from integration tests

• Enforce test isolation

• Avoid overspecification in tests

© Software Quality Lab

SWQL Präsentationsvorlage V10.0

www.software-quality-lab.com

Clean Unit Tests

Request more Clean Unit Test rules from

johannes.hochrainer@software-quality-lab.com

- 27 -

mailto:johannes.hochrainer@software-quality-lab.com

SWQL Präsentationsvorlage V10.0

© Software Quality Lab www.software-quality-lab.com

Agnes-Pockels-Bogen 1

D-80992 München

[T] +49 89 4423066-0

[W] www.software-quality-lab.com

INNOVATION MEETS QUALITY

Software Quality Lab

- 28 -

