The Limits to Testing

Reinhard Wilhelm
Universitat des Saarlandes

) o
glgl;VERSITAT Ab sl n t a

SAARLANDES Angewandte Informatik

Reinhard Wilhelm

studied math, physics and mathematical logic at Westfalische Wilhelms-Universitat Minster and
Informatics at Technische Universitat Miinchen and Stanford University

1977 Dr. rer. nat TU Munich

1978 — 2014 Professor at Saarland University

1990 — 2014 Scientific Director of the Leibniz Center for Informatics at Schloss Dagstuhl
1998 cofounder of Absint

2000 Fellow of the ACM

2006 Alwin-Walther medal from TU Darmstadt and Fraunhofer-Institut flir Graphische
Datenverarbeitung

2007 Prix Gay-Lussac-Humboldt from the French Minister of Education and Research
2008 Member of the European Academy of Sciences (Academia Europaea)

2008 Honorary doctorates from RWTH Aachen and Tartu University

2009 Konrad Zuse Medal from Gesellschaft fur Informatik

2010 Bundesverdienstkreuz am Bande (Federal Order of Merit)

2010 ACM Distinguished Service Award

2013 Member of the German National Academy of Sciences Leopoldina

Background

Time drift in Patriot rockets in 1991 [Rounding error]

Crash of railway switch controller 1995 in Hamburg-Altona [Stack
overflow]

Explosion of Ariane 5 rocket 1996 [Arithmetic overflow]
AECL Medical Therac-25 incident (1985-1987) [Arithmetic overflow]

Toyota Unintended Acceleration Accidents (2000 — 2010) [Stack
overflow]

These types of errors are hard to detect by testing

Structure of the Talk

Formal Verification Methods
Testing
_LImits to Testing

Performance Testing vs. Verification of Real-Time
Requirements

Formal Verification
of Safety-Critical Systems

Given the task to verify some correctness statement about a program
* the functional correctness of a program,

* the absence of run-time errors, non-functional
* the satisfaction of space constraints, or correctness
* the satisfaction of timing constraints properties

Verification is used here in a strong sense!
We look for guarantees.

No doubts about verified correctness claims!

 What are the alternatives?
* Question: What are you doing in practice?

Approaches to Functional Verification

Starting Point:
Correctness statements
concern all (or some
specified subset of

behaviours of
the program

all behaviours of
the program

Deductive Verification
Functional correctness proved by Theorem Proving

* done for highly safety-critical Problem: not automatable
systems, e.g. requires complex user

* PKl key gen., interaction, realistic in
 Software of academic setting or
Paris Metro, with highly skilled
e CompCert, verification specialists
verified C
compiler

all behaviours of
the program

a correct compiler is the mother of all verification
and testing activities on the source level!

Testing

(for functional and non-functional properties)

* Test the program on a number of inputs

* coverage criteria Question: |
. Program free of a certain type of error?
increase the * false positive: answer wrongly “Yes”
chance to » false negative: answer wrongly “No”
find bugs N
all behaviours of ‘ i el
the program Program testing
% - can be used to
show the
Undetected fault: test cases presence of bugs,
False positive % but never to show
their absence!
Detected fault Dijkstra (1970)

(&)

Bug Chasing
Question: Is program free of bugs?

Attempt to (quickly) find |
as many bugs as possible /B“gogtheans'cnag“:;o'&\

% static analysers
are unsound, i.e.

Undetected bug:

False positive all behaviours of do not detect all
the program bugs, and often

imprecise, i.e.,

Detected bug _\ 1 produce many

% false negatives /

;M6\ chased area

Reported bug:
False negative (false alarm)

Model Checking

Safety properties, something bad cannot happen,
formalized in temporal logic,
checked on abstract
model of system.
Problem:

 Complexity
* Bug chasin

instead

All violations
detected

//

N

all behaviours of the
program

Infeasible

behaviours \ :
Spurious error, \

output: error trace

Sound Static Program Analysis
(Abstract Interpretation)

Verify safety properties, something bad cannot happen,
by over-approximatio

/

If property holds fo All violations
the over-approx. detected

it holds for all

behaviours.

all behaviours of
the program

Infeasible \ :
behaviours

Warning:
False Negative

N\

Some (Non-Functional) Safety Properties

Absence of run-time errors (at program points)

e division never by 0

* sqrt never of a negative number

e arithmetic operation never causes overflow/underflow

e array-index is never out of bounds

* dereference never applied to null-pointer

Stacks do never overflow

Absence of timing accidents (for instructions) for WCET analysis
* memory access never misses cache

e pipeline unit is always available for dispatch of operation
* bus access is not blocked

Derived global program properties

* program terminates within a given deadline

Admitted Methods for Automotive Systems:
according to 1SO-26262

Table 9 — Methods for the verification of software unit designh and implementation

Methods ASIL sgund, i.e., can
A B c D give a guarantee
1a |Walk-through? ++ + o] o] .
1b |Inspection? + ++ ++ ++)
1c | Semi-formal verification + + ++ ++ _
1d |Formal verification o o + + +
1e | Control flow analysis® + o N0 ++ -
1f | Data flow analysisP® + + + + -
1g | Static code analysis + ++ ++ ++ -
1h | Semantic code analysis® + + + + +

@ In the case of model-based software development the software unit specification design and implementation can be verified at the
model level.

b Methods 1e and 1f can be applied at the source code level. These methods are applicable both to manual code development and
to model-based development.

¢ Methods 1e and 1f can be part of methods 1d, 1g or 1h.

d Method 1h is used for mathematical analysis of source code by use of an abstract representation of possible values for the
variables. For this it is not necessary to translate and execute the source code.

Excerpt from:
Final Draft ISO 26262-6 Road vehicles - Functional safety —
Part 6: Product development: Software Level.

Version ISO/FDIS 26262-6:2011(E), 2011.
13

Testing

functional testing — testing the input-output behavior against the
specification

— often on the basis of a validation suite

non-functional testing

— in particular performance testing
testing to locate bugs

— coverage criteria to increase the chance to catch bugs

Verifying Real-Time Requirements

* by using testing
— special case of performance testing
— performed by measurement-based methods
g‘ worst-case performance >
g worst-case guarantee >|
(o]
; vinimal gl [oecoe Bundor | Maximal
= must be tound or !
5| bower ey observed MMM - wwperbounded” | observed |y ey (40!
% bound execution TN execution Yoound
T
\
I
0 ‘ timz

<
%

<«—— measured execution times ——

possible execution times

\4

timing predictability

 complexity prevents computing exact WCET

* no guarantees!

Input

Software

initial
state

Architecture

2. limit of testing

Sound timing analysis determines upper bound instead

Loops

Programs spend their time in loops (and in recursion)
Assumption: ET(loop) = #iterations x (ET(cond) +ET(body)

How do we know #iterations? lliiiHoitesbhg
for automation: Absint’s value analysis

— Program/Developer/Model/Static Anarysrs

What is the impact of coverage criteria on WCET
determination? none!

Even path coverage executes loop body only once

But: ET(body) varies heavily — first iteration loads the
cache, consecutive iterations profit =2 considering first
iteration leads to overestimation 4. limit of testing

How to do (Sound) Timing Analysis

The Problem
Given:
1. asoftware to produce a reaction,

2. a hardware platform, on which to execute the
software,

3. arequired reaction time

Derive: a guarantee for timeliness.

Timing (WCET) Analysis
Sound methods that determine upper bounds for all
execution times,

can be seen as the search for a longest path,
through different types of graphs,
through a huge space of paths.

show
now this huge state space originates,
now and how far we can cope with this huge state space.

High-Performance Microprosessors

e increase (average-case) performance by using:
Caches, Pipelines, Branch Prediction, Speculation

* These features make timing analysis difficult:
Execution times of instructions vary widely

— Best case - everything goes smoothly: no cache miss, operands
ready, resources free, branch correctly predicted

— Worst case - everything goes wrong: all loads miss the cache,
resources are occupied, operands not ready

— Span may be several hundred cycles

Variability of Execution Times

X=a+b;

~ LoAD r2, _ =

- LOAD rl, s

§ ADD r3,r2,rl %
PPC 755

In most cases, execution
will be fast.

So, assuming the worst case
is safe, but very pessimistic!

350+

300

250+

200+

150+

100+

50

Execution Time (Clock Cycles)

Best Case Worst Case

m Clock Cycles

State-dependent Execution Times

state

* Execution time of an instruction depends on
the execution state, e.g.

— execution of instruction fetch depends on |-
cache state and on bus occupation and on

memory state execution state:
 Execution state results from the execution occupancy of
history resources

— knowing the initial state and the execution history
we would know the execution state and the
execution time of the instruction

— however, there may be many execution histories
leading to the execution of the instruction

Timing Analysis — the Search Space
with State-dependent Execution Times

Input

* all control-flow paths — depending on the
possible inputs

* all paths through the architecture for

potential initial states —
initial
execution states for paths state
reaching this program mulrD, rA, 1B
point g Architedeee——
1
instruction >
in I-cache
small operands 1
instruction bus occupied > 100 /
not in I-cache
, 4
bus not occupied large operands >

Timing Analysis — the Search Space
with out-of-order execution

Input

* all control-flow paths — depending on the
possible inputs

* all paths through the architecture for
potential initial states

initial
* including different schedules for instruction state
sequences

Architecture

Timing Analysis — the Search Space
with multi-threading

Input

all control-flow paths — depending on the
possible inputs

all paths through the architecture for
potential initial states

initial
including different schedules for instruction state
sequences

Architecture

including different interleavings of accesses
to shared resources

Why Exhaustive Exploration?

* Naive attempt: follow local worst-case transitions only

* Unsound in the presence of Timing Anomalies:
A path starting with a local worst case may have a lower
overall execution time,
Ex.: a cache miss preventing a branch mis-prediction

* Caused by the interference between processor
components:
Ex.: cache hit/miss influences branch prediction;
branch prediction causes prefetching; prefetching pollutes
the I-cache.

Binary Legend:
Executable
Phase

CFG Re-
construction

e

Control-flow
Graph

e

' _ Value
Static Program Analysis [Analysis }

Loop Bound Control-flow
Analysis Analysis

Annotated
CFG \
. S~
M.lcm_ Basic Block sl
architectural szt [Bound
Analysis Analysis

Integer Linear

Static Program Analysis T

Timing Accidents and Penalties

Timing Accident — cause for an increase of the
execution time of an instruction

Timing Penalty — the associated increase

* Types of timing accidents
— Cache misses
— Pipeline stalls
— Branch mispredictions
— Bus collisions
— Memory refresh of DRAM
— TLB miss

Our Approach

Execution time of an instruction depends on the
execution state state

Execution state results from the execution
history

We use Static Analysis of Programs for their
behavior on the execution platform

execution state:
It computes invariants about the set of all occupancy of

potential execution states at all program points,| resources

by exploring all execution histories in parallel

Deriving Run-Time Guarantees

 Our method and tool derives Safety Properties from
these invariants :

Certain timing accidents will never happen.
Example: At program point p, instruction fetch will
never cause a cache miss.

 The more accidents excluded, the lower the upper
bound.

Murphy’s
invariant

Fastest Variance of execution times Slowest

cache-miss penalty

over-estimation

Tremendous Progress 200

/

The explosion of penalties has been compensated
by the improvement of the analyses!

// 60
30-50% Y
0
20-30% =~
~ 15% / \
10%
4
1995 2002 2005

Lim et al. Thesing et al.

years +
methods

State Space Explosion in Timing Analysis
concurrency +
shared resources

preemptive

scheduling
out-of-order
execution

constant
execution
times

~1995 ~2000 2010 and on

Timing schemata Static analysis 22?

v

Is All Lost?

How could one get (halfway) precise timing estimates?

No guarantees, though

Based on the facility to extract traces including time stamps, e.g.
NEXUS

Needs loop bounds from Value Analysis

Rough idea: determine end-to-end execution times of traces
identify associated program paths,

Map control flow to an Integer Linear Program (ILP)
Determine worst-case path by solving the ILP

But

Often bandwidth problems for tracing HW

Unclear contribution of asynchronous events, e.g. DRAM
refresh

Complex control-flow structure compared to basic-block
graph

Conclusions

Performance testing in the form of measurement-based timing analysis
cannot derive guarantees

Sound timing analysis delivers guarantees for quite complex processors
Current architectural trends

* unpredictable cores

* multi-core architectures with shared resources

* reduced observability

do not allow

* sound timing analysis with acceptable effort and desired precision

* reduce precision for performance estimation

e The problem remains
 The possibility to solve it disappears

Literature

C. Ferdinand et al.: Reliable and Precise WCET Determination of a
Real-Life Processor, EMSOFT 2001

R. Wilhelm et al.: The Determination of Worst-Case Execution Times -
Overview of the Methods and Survey of Tools. ACM Transactions on
Embedded Computing Systems (TECS) 7(3), 2008.

R. Wilhelm et al.: Memory Hierarchies, Pipelines, and Buses for
Future Architectures in Time-critical Embedded Systems, |IEEE TCAD,

July 2009

Mingsong Lv et al. : A Survey on Cache Analysis for Real-Time
Systems, LITES 2016

https://www.absint.com/ait/

