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Software Quality 

 Embedded control systems must satisfy high quality objectives. 

 Software failures can 

 in general: cause high costs, e.g. due to recall campaigns 

 in safety-critical systems: endanger human beings 

 In highly safety-critical systems software test and validation 
responsible for significant part of development costs (≥ 50%). 

 Challenge: ensure system safety at reasonable costs. 

 The cost of a software defect is related to the time it is discovered: 
the later a bug is found, the higher the costs to fix it. 

 

 Verification activities should be performed continuously during the 
development process to detect critical errors and prevent  
late-stage integration problems. 
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Functional Safety 

 Demonstration of functional correctness 

 Well-defined criteria 

 Automated and/or model-based testing 

 Formal techniques: model checking, theorem proving 

 Satisfaction of non-functional requirements 

 No crashes due to runtime errors (Division by zero,  
invalid pointer accesses, overflow and rounding errors) 

 Resource usage: 

 Timing requirements (e.g. WCET, WCRT) 

 Memory requirements (e.g. no stack overflow) 

 Insufficient: Tests & Measurements 

 Test end criteria unclear 

 No full coverage possible  

 "Testing, in general, cannot show the absence of errors." [DO-178B] 

 Formal technique: abstract interpretation finds the worst case and  
can provide guarantees. 
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Required by 

DO-178B /  DO-178C / 

ISO-26262, EN-50128, 

IEC-61508 

Required by 

DO-178B /  DO-178C / 

ISO-26262, EN-50128, 

IEC-61508 



Non-Functional Software Failures 

 Time drift in Patriot missles in 1991 

 Floating-point rounding error 

 Crash of railway switch controller 1995 in Hamburg-Altona 

 Stack overflow 

 Explosion of Ariane rocket 1996 

 Arithmetic overflow 

 USS Yorktown cruiser propulsion system failure 1997 

 Divide by zero 

 Toyota Camry 2004 Unintended Acceleration 

 Stack overflow, memory corruption 
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Automotive: ISO-26262 
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Criticality levels:  

A(lowest)  

to 

D (highest) 

Excerpt from:  

ISO 26262-6 Road vehicles - Functional safety – 

Part 6: Product development: Software Level, 2011. 



SW Unit Design & Implementation 
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Excerpt from:  

Final Draft ISO 26262-6 Road vehicles - Functional safety – 

Part 6: Product development: Software Level.  

Version ISO/FDIS 26262-6:2011(E), 2011.  



Static Program Analysis 

 General Definition: results are only computed from the 
program structure, without executing the program under 
analysis. 

 

 Analysis scope 

 Binary code: worst-case execution time, worst-case stack usage 

 Source code: violations of coding rules, runtime errors 

 

 General advantage: 

 No need to perform time-consuming measurements on physical 
hardware 

 Well-suited for continuous verification 
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Static Program Analysis 

 Analysis depth: 

 Syntax-based: Style checkers (e.g. MISRA-C) 

 Unsound semantics-based: Bug-finders / bug-hunters.  

 Can find some bugs, but cannot guarantee that all bugs are found. 

 E.g. Coverity CMC, Klocwork K7, CodeSonar, Polyspace Bug Finder, 
… 

 Sound semantics-based / Abstract Interpretation-based 

 Can guarantee that all bugs (from the class under analysis) are 
found. 

 Results valid for every possible program execution with any  
possible input scenario.  

 Examples: aiT WCET Analyzer, StackAnalyzer,  
Polyspace Code Prover, Astrée. 
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Model-based Software Development 

 Application graphically specified 
by data flow diagrams and/or  
finite state machines 

 Model is software specification 
and has executable semantics 

 Automated & integrated  
development tools: 

 automatic target code generation (typically C code) 

 automatic simulation / model-based testing 

 formal verification at model level 

 Examples: Esterel SCADE, Matlab/Simulink + dSPACE TargetLink 

 BUT: Higher level of abstraction than with programming in C. 

 What about timing, memory consumption,  
runtime errors, integration issues? 
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Mastering Resource Usage 
in Evolving Software 

10 



Real-Time Systems 

 Controllers in planes, cars, plants, … are expected to finish 
their tasks within reliable time bounds. 

 Hence, it is essential that an upper bound on the execution 
times of all runnables/tasks is known. 

 Commonly called the Worst-Case Execution Time (WCET). 

 Schedulability analysis must be performed.  

Worst-Case Response Time (WCRT)  

 Hard real-time systems: deadline violations 
can have catastrophic consequences. 
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The Timing Problem 



The Timing Problem 
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 Execution time 

Exact worst-case  

execution time 

  

Safe upper bound  

for worst-case 

execution time (aiT) 
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execution time  

measurements 
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 Global static program analysis by Abstract Interpretation (sound):  
microarchitecture analysis (caches, pipelines, …) + value analysis 

 Integer linear programming for path analysis  

 Safe and precise bounds on the worst-case execution time (WCET) 
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 aiT WCET Analyzer 

Entry Point  

clock 10200 kHz ; 

loop "_codebook" + 1 loop exactly 16 end; 

recursion "_fac" max 6; 

snippet "printf" is not analyzed and takes max 333 cycles; 

flow "U_MOD" + 0xAC bytes / "U_MOD" + 0xC4 bytes is max 4; 

area from 0x20 to 0x497 is readonly; 

Specifications (*.ais) Worst Case Execution Time 
+ Visualization, Documentation 

void Task (void) { 

  variable++; 

  function(); 

  next++: 

  if (next) 

    do this; 

  terminate() 

} 

Application Code 

Executable  
(*.elf /*.out) 

Compiler  
Linker 



From aiT to TimingProfiler 

 aiT is designed to give timing guarantees 

 High precision 

 In-depth modelling of microprocessor architecture 

 Extensively validated 

 Requires exact microcontroller variant and detailed configuration to 
be known 

 

 In early design stages 

 Precise microcontroller variant & configuration may not be fixed yet  

 Estimations of the WCET are sufficient 

 Timing information must be available with low computing effort 

 User interaction must be minimal 

 Solution: TimingProfiler 
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TimingProfiler Characteristics 

 Based on a representative core implementing the target 
instruction set 

 No in-depth modelling of each specific core + peripherals 

 Defaults for hardware configuration provided 

 No user specification needed 

 Can be adapted by users, if desired 

 Defaults for software characteristics provided 

 Default loop and recursion bounds are provided if exact bound not 
known 

 Can be refined by users, if desired 

 Computation time and memory requirements minimized 

 Pipelines analysis follows local worst-case  

 Much faster than safe analysis, but typically close to safe  
result 
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 Global static program analysis:  
microarchitecture analysis (caches, pipelines, …) + value analysis 

 Integer linear programming for path analysis  

 Estimates on the worst-case execution time (WCET) 
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 TimingProfiler Workflow 

Entry Point  

clock 10200 kHz ; 

loop "_codebook" + 1 loop exactly 16 end; 

recursion "_fac" max 6; 

snippet "printf" is not analyzed and takes max 333 cycles; 

flow "U_MOD" + 0xAC bytes / "U_MOD" + 0xC4 bytes is max 4; 

area from 0x20 to 0x497 is readonly; 

Specifications (*.ais) Worst Case Execution Time Estimate 
+ Visualization, Documentation 

void Task (void) { 

  variable++; 

  function(); 

  next++: 

  if (next) 

    do this; 

  terminate() 

} 

Application Code 

Executable  
(*.elf /*.out) 

Compiler  
Linker 



Result Exploration 

 Visualization of call and control flow graph with timing 
information for critical path, functions, basic blocks. 

 Table overview of direct vs. cumulative execution time for 
each function: context-insensitive and context-sensitive 

 What is maximal contribution of function in all potential execution 
contexts? 

 What is contribution of function when called from A vs. called from B? 

 Executable browser: information about variables (names, 
types, address, size), sections (code/data, access rights, 
allocated/relocated, ...) 

 Variable usage statistics based on counting memory accesses 
on WCET path 

 Memory map explorer: size and contents of memory areas 
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Integration in the Development Process 

 Batch mode execution enables TimingProfiler to be used in 
continuous integration environments 

 fully automatic tool execution 

 continuous profiling of timing behavior per night/build/commit/... 

 Result and configuration files available in open XML formats 

 TimingProfiler can be complemented by StackAnalyzer in the 
same GUI (a³), enabling continuous timing and stack analysis. 

 Tool coupling to SymTA/S enables seamless system-level 
timing analysis from instruction level to interECU end-to-end 
times. 

 Tool coupling to dSPACE TargetLink enables continuous timing 
monitoring during model-based development. 
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The a³ Jenkins Plug-In 

 Provides automatic integration of TimingProfiler in the 
Continuous Verification Framework Jenkins 

 One-click installation 

 Easy to configure 

 Fully integrated 

 Features: 

 Configure an analyzer run as a Jenkins build step. 

 Automatically mark build step as erroneous depending on analysis 
results and pedantic levels. 

 Generate analysis reports directly in your Jenkins workspace. 

 Access analysis results via the Jenkins web interface. 
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TimingProfiler Benefits 

 Provides continuous feedback about timing behavior during 
development 

 Enables significant reduction of effort compared to trace 
and measurement-based timing testing 

 Available even at stages where application is not mature 
enough for timing measurements 

 Intuitive graphical exploration of execution time 
distribution, time-critical paths, and variable usage 

 Can be seamlessly integrated in development process and 
continuous verification frameworks 

 Enables time-conscious software development 

 Avoids late-stage integration problems 
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Worst-Case Stack Usage Analysis 
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The Stack Usage Analysis Problem 

 In embedded systems the required stack space has to be reserved for 

each task at configuration time => maximal stack usage has to be 

statically known. 

 Underestimating the maximal stack usage can cause stack overflows. 

Stack overflows are severe errors: 

 they can cause wrong reactions and program crashes, 

 they are hard to recognize,  

 they are hard to reproduce and fix. 

 Overestimating the maximal stack usage means wasting resources 

(storage space, energy consumption, weight, money). 

 Testing is error-prone and expensive 

 Typical stack usage of a task can be very different from maximum stack usage.  

 Dynamic testing (e.g. stack pollution checks) typically cannot guarantee that the 

worst case stack usage has been observed. 
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Computing the Worst-Case Stack Height 

 StackAnalyzer computes safe upper bounds of the stack 
usage of the tasks in a program for all inputs 

 Static program analysis based on Abstract Interpretation 
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Entry Point  

recursion "_fac" max 6; 

instruction "_main" + 1 computed calls 

"_fooA","_fooB","_fooC"; 

routine "_fib" incarnates max 5; 

 

Specifications (*.ais) Worst Case Stack Usage 

+ Visualization, Documentation void Task (void) { 

  variable++; 

  function(); 

  next++: 

  if (next) 

    do this; 

  terminate() 

} 

Application Code 

Executable  
(*.elf /*.out) 

Compiler  
Linker 

StackAnalyzer 



Demonstrating the  
Absence of Runtime Errors  

in Evolving Software 
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The Astrée Analyzer 

 Sound static Analyzer based on Abstract Interpretation designed to 

prove the absence of runtime errors and data races in C programs  

(C99 standard) 

 If Astrée does not report any alarm (potential runtime error / data 

race) this is a formal proof that there are no such errors in the code.  

 Reference customer: Airbus flight control software (DO-178B level A). 

No false alarm on >755.000 LOC, analysis time 6h. 

 Automatic tool qualification according to ISO-26262, DO-178B/DO-

178C, IEC-61508, IEC-60880, etc. by Qualification Support Kits (QSK) 

and Qualification Software Life Cycle Data reports (QLSCD). 

 Support for model-based code generation; tool couplings to dSPACE 

TargetLink, model link to MATLAB/ SIMULINK available. 

 Open formats, full continuous verification support. 
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The Astrée Rulechecker 

 Check for compliance with coding rules 
 Support for MISRA C:2004, MISRA C:2012, CERT, CWE, and ISO/IEC 

17961:2013 

 Determine code metrics 
and checks for  
threshold violations 
 Includes common  

HIS metrics with compliant  
default thresholds. 

 E.g.: comment density,  
cyclomatic complexity, … 

 Extensible architecture 
 Configurable rules 

 User-defined sets of coding rules  
can be added (engineering service by AbsInt). 
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The Astrée Analyzer 

 Sound static analysis based on 
abstract interpretation to prove 
absence of runtime errors. 

 Astrée detects all runtime errors 
with few false alarms:  
 Array index out of bounds 

 Int/float division by 0 

 Invalid pointer dereferences 

 Arithmetic overflows and wrap-arounds 

 Floating point overflows and invalid operations (Inf and NaN) 

 Uninitialized variables 

 Data races, inconsistent locking 

 + Floating-point rounding errors taken into account 

 + User-defined assertions, unreachable code,  
   non-terminating loops 
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The Astrée Jenkins Plug-In 

 Provides automatic integration of Astrée in the Continuous 
Verification Framework Jenkins 

 One-click installation 

 Easy to configure 

 Fully integrated 

 Features: 

 Configure an analyzer run as a Jenkins build step. 

 Launch Astrée analysis as newly created analysis revision. 

 Automatically mark build step as erroneous depending on the 
categories and statuses of findings. 

 Generate analysis reports directly in your Jenkins workspace. 

 Access analysis results via the Jenkins web interface. 
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Excerpt from:  

Final Draft ISO 26262-6 Road vehicles - Functional safety – 

Part 6: Product development: Software Level.  

Version ISO/FDIS 26262-6:2011(E), 2011.  

Development Process 

TimingProfiler 

aiT WCET Analyzer Astrée 

StackAnalyzer 



Conclusions 

 Static analysis is ideally suited for continuous verification 
activities throughout the software development stage 

 TimingProfiler provides continuous feedback about the 
timing behavior without accessing physical hardware and 
without need to stimulate, test and measure 

 Enables time-conscious software development 

 Avoids late-stage integration problems 

 StackAnalyzer provides continuous feedback about the 
stack consumption without accessing physical hardware 
and without need to stimulate, test and measure 

 Enables time-conscious software development 

 Avoids late-stage integration problems 



Conclusions continued 

 Astrée provides a history-aware analysis concept which 
records the evolution of the analyzer configuration and 
links it to the software evolution 

 Easily determine differences between analysis revisions 

 Easily adapt analyzer configuration to new source code versions 

 Analysis results on previous software versions  
easily reproducible 
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