
Dr. Frank Raiser
Konzept Informationssysteme GmbH

Clean Property-based Contract Tests

nProperty-based Testing

�Predicate Logic, Contracts, Invariants

�How Property-based Testing works

nProperty-based Contracts

�Definition and Application of contract tests

nQuality Assurance

�Detect untested contracts

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Overview

22017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Properties – Predicate Logic

nequals implementation should be

�Reflexive, Symmetric, Transitive, Consistent, Null-safe

�F.ex. Symmetry: ∀𝑥∀𝑦. (𝑥 ≠ 𝑛𝑢𝑙𝑙 ∧ 𝑦 ≠ 𝑛𝑢𝑙𝑙) →

𝐸𝑞𝑢𝑎𝑙𝑠 𝑥, 𝑦 	↔ 𝐸𝑞𝑢𝑎𝑙𝑠 𝑦, 𝑥

Equals is a
predicate that
needs to be

satisfied.

Predicate logic
uses ∧ for logical

and (&&)

32017-06-22

nInterfaces define contracts

nMany prominent examples in Java

�Comparator#compare, Comparable#compareTo

�List#contains, List#remove

nNo choice – you have to agree to that contract

�java.lang.IllegalArgumentException: Comparison

method violates its general contract!

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Properties – Contracts

How do you test these contracts?

42017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Example Scenario: Premium Calculation

nCalculation of the premium

factor for a car insurance
�Adapted from “Developer Testing” by

Alexander Tarlinder

[ISBN-13: 978-0-13-429106-2]

nPotential indicators:

�Younger persons are more likely to

have accidents

�Female drivers are less likely to

claim insurance

52017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Example model

Represents
someone who can

request an
insurance

Interface and
different

implementations
for premium factors

62017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Standard Unit Testing

AgePremiumCalculator

1. Create a

“test” person

2. Run the

calculator

3. Verify the

correct factor

4. Repeat

Factor == 1.75

Factor == 1.0

Factor == 1.35

72017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Standard Unit Testing – Limited Sample Space

new Person(Gender.FEMALE, new Age(19))

new Person(Gender.FEMALE, new Age(35))

new Person(Gender.FEMALE, new Age(73))

What
about
these?

82017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Property-Based Testing with junit-quickcheck

∀𝑥. 𝑥	𝑖𝑠	𝑎	𝑃𝑒𝑟𝑠𝑜𝑛 ∧ 𝑥. 𝑎𝑔𝑒 ≥ 60 → 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹𝑎𝑐𝑡𝑜𝑟 𝑥 = 1.35

nElderly drivers should get a premium factor of 1.35

AgePremium
Calculator

Factor == 1.35

92017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Generators

nHow to get a Person ?

nGenerators do that

�Configurable selection of

appropriate generator

�Configuration of generator

possible as well (f.ex. only

female persons)

Generators can be straightforward

102017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

junit-quickcheck – Background

Language Library License

C Theft
https://github.com/silentbicycle/theft

ISC License

Clojure test.check
https://github.com/clojure/test.check

Eclipse Public License

Erlang Triq – Trifork QuickCheck for Erlang
https://github.com/krestenkrab/triq

Apache 2.0

Haskell QuickCheck
https://hackage.haskell.org/package/QuickCheck

BSD 3

Java junit-quickcheck
https://github.com/pholser/junit-quickcheck

MIT

Javascript qc.js
https://bitbucket.org/darrint/qc.js

Revised BSD

.NET FsCheck
https://github.com/fscheck/FsCheck

Revised BSD

Python factcheck
https://github.com/npryce/python-factcheck

Apache 2.0

Scala ScalaCheck
http://scalacheck.org/

Revised BSD

112017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Possibilities and Limitations

nMany tests with little code

nBetter readability

�Property explicitly formulated

�Fewer tests needed

�No object construction code

nReusable generators

nRandom input data

�Can be reproduced (seed)

�no guarantee for edge-cases

nGenerators needed

�can also get complex

nRuntime penalty

�Falsifications tried 100 times

122017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Example: combining calculators

Product of base
class factor and
other calculators’

factors

132017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Contracts

Standard
PremiumCalculator

Factor == 1.1
(male)

Factor == 1.925
(male 1.1 * young 1.75)

nVarious factors involved, then a new business rule:

�All factors must be within the range of 0.5 and 2.0

‒ Essentially a contract on the PremiumCalculator interface

142017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Property-based Contracts

Codifies contractual
agreement for all

interface
implementations

152017-06-22

Sufficient for 100 test cases against the contract!

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Clean Property-based Contracts

Explicit
adherence
to contract

How much effort
and code is it to

verify the
contract for an
implementation

class?

Provides
test subject

162017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Liskov Substitution Principle

nBasePremiumCalculator

should satisfy the contract

nLSP requires derived

classes to adhere to contract

�Can be easily tested now

�But: What if a developer forgot

to add the contract test?

172017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

jQAssistant is a QA tool which
allows the definition and validation
of project specific rules on a
structural level. [Source: jqAssistant docs]

Define contracts

Define
LSP rules

Validate
contract

adherence

182017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Taking quality assurance even further

jqassistant any Continuous Integration system
Analyze
source

Detect
contracts

Detect
classes for
contracts

Ensure Test
classes exist

Ensure
contract is

implemented

Execute tests to
verify all contracts

for all
implementations

192017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Contract Definition

Neo4j’s
Cypher

query syntax
Interface

must end in
“Contract”
and have

some
@Property

Mark as a
contract

Create
relationship to
the type the

contract
applies to

*	The	precise	rules	
may	need	to	be	

tweaked	in	project-
specific	ways	(f.ex.	If	
you	want	a	base	class	
for	contracts	instead	

of	interface	w/	
default	methods)

202017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Contract Adherence Constraint

Query types for
which contract

applies and their test
classes

Make sure
test class
adheres to
the contract

212017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Contract Testing
Does not implement

PremiumCalculatorConcept

222017-06-22

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Summary

nExplicit contract definitions

nTiny amount of code

nReusable generators

nSafety-net against

accidentally ignoring

contracts

nEffort to create generators

nLarge amount of tests

being executed

nQuality (dependent on

generators and

properties) may be

misleading
232017-06-22

Thank you

Clean Property-based Contract Tests

Clean Property-based Contract Tests © 2017 Konzept Informationssysteme GmbH

Konzept Informationssysteme
GmbH
Pfarrer-Weiss-Weg 12
89073 Ulm

Dr. Frank Raiser
Software Entwicklungsingenieur
Tel.: +49 731 1403434 – 51
Fax.: +49 731 1403434 – 34
frank.raiser@konzept-is.de
www.konzept-is.de

242017-06-22

[All images Public Domain.]

Paul Holser

Special thanks to
pholser for extending
junit-quickcheck to
make this work

