
04.11.2015 Andrea Huber

Getting clean

How to apply clean code principles

Andrea Huber
techdev Solutions GmbH

04.11.2015



04.11.2015 Andrea Huber

Conclusion

 Clean Code is doable.
 But only if both software developers and 

companies make an effort.

Who can do what to make it work?

© xkcd.com
By Randall Munroe

© dilbert.com
By Scott Adams



04.11.2015 Andrea Huber

Agenda

0. Why care?

1. What can software developers do in order to 
learn clean code principles?

2. What can companies contribute?  



04.11.2015 Andrea Huber

Why care?

 Readable code, easily 
comprehensible by others

 Extensible code
 Interchangable components

} Maintainable
code

 „Software craftsmanship“:    Pride in good codebase



04.11.2015 Andrea Huber

 Here's what software developers need in order to 
learn clean code:

         1. Mindset

         2. Guidelines

         3. Feedback

         4. Practice

Prerequisites



04.11.2015 Andrea Huber

Mindset

 Be prepared to learn programming twice: 
 First time: Learn how to get it to work.
 Second time: Learn to code well/professionally/clean.

 You will write bad code. It's ok. 
Just do not leave it at that.



04.11.2015 Andrea Huber

Mindset

 Think of your code as a contribution to a common 
code base. 

 This brings more responsibility:
 Your code must be easily comprehensible by others.
 You must make sure you approve of the code others 

check in.



04.11.2015 Andrea Huber

Mindset

 Internalize the following principle: 
Once the code works and the tests run, the first part 
of your job is done. The second part is cleaning up / 
refactoring your code.

 Work in 3 phases:
implementation → test → refactoring
test → implementation → refactoring

 



04.11.2015 Andrea Huber

Guidelines

 Keep a checklist of the most important clean code principles your team agreed on. 
Check your code against these principles before checking it in.

1. Could my names (variables, methods, classes) be more expressive?

2. Does any of my methods do more than one thing, i.e. does it violate the Single 
Responsibility Principle?

3. Do I have duplicate code?

4. Did I write unneccessary comments? On the other hand, did I comment everything that 
needs commenting?

5. Did I use Javadoc correctly?

6. Did I return null instead of throwing an exception?

7. Are exceptions handled in the appropriate level? Are they documented?

8. Do I have full test coverage?

9. Is my code properly formatted (i.e. according to the team formatting rules)?



04.11.2015 Andrea Huber

Comment examples

Neccessary comment:

Unneccessary comment:



04.11.2015 Andrea Huber

Guidelines

 Let tools for static code analysis assist you with 
your code quality:

 FindBugs
 Checkstyle
 PMD
 SonarQube



04.11.2015 Andrea Huber

Guidelines

 Keep a checklist of your favourite mistakes. Check 
your code against these before checking it in. 

 For example: 
1. Copy & paste error: Did I adapt names? Does every 
aspect of the old code fit the new usage?

2. Did I write anything myself my framework offers 
out-of-the-box, or I could have used a library for? 

3. Did I auto-format my code?



04.11.2015 Andrea Huber

Guidelines

 Think of your code as prose. 
Learn to ask yourself: Does it read well?



04.11.2015 Andrea Huber

Guidelines

 Be nitpicky about tests. Make sure your tests match the following 
criteria: 

1. Do they cover everything, also corner cases 
(tools like SonarQube help with determining test coverage)?

2. Do I have one concept per test
(not neccessarily one assert-statement)?

3. Do they have expressive names? Is it clear from the name what is being 
tested, and what the expected outcome is?

4. Do their names correspond to the convention your team agreed on?

5. Did I use the right test scope, i.e. did I write an integration tests where a 
unit test would suffice? Did I test anything unneccessary?



04.11.2015 Andrea Huber

Guidelines

 Clean versioning: 
 Make sure your commit messages are expressive 

and correspond to the team standard.

 

 If you use Git, learn squash and rebase in order to 
have a clean commit history.



04.11.2015 Andrea Huber

Guidelines

 Keep your iteration cycles small
(test → implementation → refactoring).
Let your pull request deal with one ticket only.

 No premature optimization. Do only the task at 
hand.



04.11.2015 Andrea Huber

Feedback

 Do code reviews as often as you can: 
have your code reviewed and review others' code.

 If possible, integrate code reviews in your team's 
workflow.

 Leave your ego at the door when your code is 
reviewed. Don't hesitate to ask for positive 
feedback – makes criticism much easier to handle!



04.11.2015 Andrea Huber

Practice

 ...practice, practice...
 Regularly check your workflow and adapt it if you 

can think of improvements.
This goes for the team's workflow as well as for 
individual workflows.

 ...and practice.



04.11.2015 Andrea Huber

Company perspective

 Software developers have to learn clean code themselves. 
But a company can offer a good learning environment.

 Reminder: What do software developers need in order to 
learn clean code?

1. Mindset

2. Guidelines

3. Feedback

4. Practice



04.11.2015 Andrea Huber

Mindset

 Communicate the importance of clean code in your 
company. Encourage your developers to learn clean 
code. Again and again.

 But do not leave it at that – offer good conditions to 
apply and practice clean code principles.



04.11.2015 Andrea Huber

Project workflow

 These activities should be part of your developers' 
daily workflow:

 Writing tests.
 Refactoring code.
 Reviewing code.

 Make sure everybody does these activities regularly.
 Allow enough time for these activities in project 

planning - avoid too much technical debt. 



04.11.2015 Andrea Huber

Company standards

 Agree on certain standards (naming conventions, 
most important clean code principles, formatting 
rules, commit message conventions etc.) in a team / 
in the company.

 Write them down.
 Make sure people understand WHY these standards 

are important.



04.11.2015 Andrea Huber

Real life example



04.11.2015 Andrea Huber

Staffing

 Hire enough seniors / people with clean code 
experience to teach juniors.

 Make it part of their job description to maintain 
code standards in the team, offer guidance and 
provide regular feedback on code. 



04.11.2015 Andrea Huber

Infrastructure

 Offer infrastructure, i.e.  
 tools for code reviews (GitHub etc.),
 tools doing static code analysis (SonarQube, FindBugs, 

checkstyle, PMD etc.),
 good IDE support (IntelliJ Ultimate, WebStorm etc.).



04.11.2015 Andrea Huber

Training

 Provide opportunities for developers to improve their code 
quality:

 Hire experts e.g. for refactoring workshops.
 Send your staff to conferences, hackatons etc.
 Organize in-house tech talks on the subject to spread 

knowledge.
 If you complain that you cannot find good junior software 

developers: why not offer clean code / refactoring workshops 
at universities as a recruiting initiative?



04.11.2015 Andrea Huber

Conclusion

 Clean code can work, if both software developers and 
companies make an effort.

Remember: it's a process! 
Forget clean. Try to get cleaner every day.

Thank you for your attention. 


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27

