
Putting the ‘D’ in TDD
Or: Between Development And Design

Shai Yallin, Wix.com
Clean Code Days, Munich 2015

•Your job is not to write code

•TDD is not about testing
http://tldrsocial.tumblr.com/

What’s In It For You

• Lessons learned in 10 years writing software

• Thoughts and beliefs acquired by reading and
practicing

• Working style that helped me become a
better engineer

• …and a less frustrated one, too

About Your Host

• Coding since 1994

• Engineering software and culture at Wix.com
since 2010

• Involved with Israeli Scala and TDD
communities

• Rewrote big chunks of Wix backend code

What is design?

Is it this?

http://www.u.arizona.edu/~przybyls/labels/software.html

Or this?

http://www.tracemodeler.com/gallery/java%20io%20-%20reading%20an%20int%20from%20a%20file.html

Wikipedia says:

“Software design is the process of
implementing software solutions to one or
more set of problems. One of the important
parts of software design is the software
requirements analysis (SRA). It is a part of
the software development process that lists
specifications used in software engineering.”

http://en.wikipedia.org/wiki/Software_design

Software Gardening

In GOOS1, Pryce and Freeman liken
software engineering to growing a biological
entity.

Our job is more like that of a gardener than
that of a structural engineer2.

If this is the case, where does design come
into the picture?

1 Growing Object-Oriented Software, Guided by Tests, page XVII
2 http://www.chrisaitchison.com/2011/05/03/you-are-not-a-software-engineer/

Michael Feathers says:

“When you are programming, you are doing
detailed design. The manufacturing team for
software is your compiler or interpreter. The
source is the only complete specification of
what the software will do. The cute boxes in
class diagrams are not the design, they are a
high level view of the design.”

http://c2.com/cgi/wiki?WhatIsSoftwareDesign

He goes on saying:

“The artificial line between programming and
design causes tremendous waste. Everyone thinks
that software is intrinsically different. That it
requires a completely different approach from
anything else in engineering. It isn't different, we
just misunderstood it. We believed that coding and
testing were not part of design. They are just like
prototyping on a [white]board. Part of design.”

http://c2.com/cgi/wiki?TheSourceCodeIsTheDesign

The Implication

• To code is to design

• As we grow our software, the design emerges

• We code according to product requirement

• Alas, requirements often change as software
grows

• Often, this gives rise to Big Balls Of Mud1 2

1 http://www.laputan.org/mud/
2 http://effectivesoftwaredesign.com/2013/06/17/the-myth-of-emergent-design-and-the-big-ball-of-mud/

Or Put Differently:

• Requirements will change

• With design choices, earlier == bigger
impact

• Thus, focus on interfaces and defer the
implementation

Looking In

https://campfornow.wordpress.com/2014/09/03/on-the-outside-looking-in/

Outside In

• When writing a class, we code to interfaces
rather than to implementation

• The same approach can – and should – be used
when approaching systems, sub-systems and
modules

• This is achieved when you start writing a new
collaborator (be it a method, class, module)
from the call site

Ain’t Gonna Need It1

• This, in essence is Outside-In Development

• We end up with cohesive, loosely-coupled,
SOLID systems

• Promotes the YAGNI principle

• This keeps your code tight and orderly

1 You actually might need it, but most likely not. See http://c2.com/cgi/wiki?YagniExceptions

YAGNI Violated

19

On Mechanics and Semantics

• Outside in development also very nicely aims
us towards Abstractions rather than
Indirections

• Naming matters! i.e. Librarian vs BookService

• Interfaces over Implementations at system
scale → Semantics over Mechanics

• Our job is to introduce these Semantics

They Die Hard

• Engineers grow up on the GoF book, Spring,
Hibernate, etc

• Patterns and technologies are cool and
exciting

• And we want to use them

• We need a paradigm shift to shake off old
habits of over-engineering and pattern
obsession

TDD To The Rescue

http://mackwebsolutions.com/2012/12/2012-in-all-its-glory-mack-webs-year-in-review/

Not TDD

• Writing tests after writing production code

• Writing all tests for a module before writing
the module

• Writing lots of E2E tests that are tightly-
coupled to the system’s inner behavior

• Writing E2Es for the server without including
the client in the flows

A Brief History of TDD

• Coined by Kent Beck around the turn of the
century

• Began as a part of the Extreme Programming
movement but later spun off as its own
methodology

• Body of research by Kent Beck, Nat Pryce,
Steve Freeman and Martin Fowler

A Brief History of TDD at Wix

• Early 2011 - IT/E2E infrastructure for HTTP
servers

• Late 2011 - Major refactoring of BBOM via E2E
acceptance tests

• 2012 - Beginnings of TDD adoption

• 2013 - PETRI developed using TDD

• 2014 - TDD major part of Wix Academy

TDD Lifecycle

1. Test

2. Code

3. Refactor

4. GOTO 1

https://twitter.com/buenosvinos/status/387199304815112192

Test

• We start developing a system by writing a
failing E2E test that demonstrates the first use
case

• This test is in English and does not compile at
this phase

• We examine our test to make sure it makes
no assumptions about any implementation
details

Code

• We start making the test pass, from the
outside in

• Write the simplest code possible

• This will tease out any complexity we haven’t
considered before

• It will take some time - that’s OK

• End up with The Walking Skeleton

Refactor

• We examine the code we just wrote – and
any code that might have been affected – for
smells

• We determine solutions to these smells.
Often, these solutions are Design Patterns

• Iteration by iteration, a design for our system
emerges

What is Refactoring?

“Refactoring is the process of changing a
software system in such a way that it does not
alter the external behavior of the code yet
improves its internal structure. It is a disciplined
way to clean up code that minimizes the chances
of introducing bugs. In essence when you refactor
you are improving the design of the code after it
has been written.”

http://martinfowler.com/books/refactoring.html

The Forgotten Step

• We sometimes forget about the ‘Refactor’
step, or don’t give it its due respect

• Might be due to time constraints, or
misunderstanding of what ‘Refactoring’ actually
means

• Refactoring is not an optional step - it's what
aims us towards the required abstractions

Refactoring in the TDD flow

• TDD urges us to code in small increments

• It effectively holds us back from making drastic
changes that are not necessary

• As a result, each refactor will be relatively
small

• This is done both for production code and
test code

Kicking off the TDD process

• We sit with the PM, go over the product
requirements as they are currently understood

• We enumerate and prioritize features

• We pick a first feature and start coding it,
building a Walking Skeleton

• We follow the rabbit hole – many hidden
issues will now surface

Revised TDD Lifecycle

1. Pick the most important feature

2. Test

3. Code

4. Refactor

5. GOTO 2 - or -

6. GOTO 1

It’s a Way of Life

• Cultivate a beginner’s mind

• Let go of our egos

• YSAGNI

http://www.araye.net/Posts/32/%D8%A2%D8%B4%D9%86%D8%A7%DB%8C%DB%8C-%D8%A8%D8%A7-%D8%A7%D8%B5%D9%84-YAGNI-%D8%AF%D8%B1-
%D8%AA%D9%88%D8%B3%D8%B9%D9%87-%D9%86%D8%B1%D9%85%E2%80%8C%D8%A7%D9%81%D8%B2%D8%A7%D8%B1

Q&A

shaiy@wix.com

http://www.shaiyallin.com

@shaiyallin

